本文整理汇总了C++中MatrixXf::rows方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixXf::rows方法的具体用法?C++ MatrixXf::rows怎么用?C++ MatrixXf::rows使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MatrixXf
的用法示例。
在下文中一共展示了MatrixXf::rows方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
DenseKernel(const MatrixXf & f, KernelType ktype, NormalizationType ntype):f_(f), ktype_(ktype), ntype_(ntype) {
if (ktype_ == DIAG_KERNEL)
parameters_ = VectorXf::Ones( f.rows() );
else if( ktype == FULL_KERNEL )
parameters_ = MatrixXf::Identity( f.rows(), f.rows() );
initLattice( f );
}
示例2: featureGradient
MatrixXf featureGradient( const MatrixXf & a, const MatrixXf & b ) const {
if (ntype_ == NO_NORMALIZATION )
return kernelGradient( a, b );
else if (ntype_ == NORMALIZE_SYMMETRIC ) {
MatrixXf fa = lattice_.compute( a*norm_.asDiagonal(), true );
MatrixXf fb = lattice_.compute( b*norm_.asDiagonal() );
MatrixXf ones = MatrixXf::Ones( a.rows(), a.cols() );
VectorXf norm3 = norm_.array()*norm_.array()*norm_.array();
MatrixXf r = kernelGradient( 0.5*( a.array()*fb.array() + fa.array()*b.array() ).matrix()*norm3.asDiagonal(), ones );
return - r + kernelGradient( a*norm_.asDiagonal(), b*norm_.asDiagonal() );
}
else if (ntype_ == NORMALIZE_AFTER ) {
MatrixXf fb = lattice_.compute( b );
MatrixXf ones = MatrixXf::Ones( a.rows(), a.cols() );
VectorXf norm2 = norm_.array()*norm_.array();
MatrixXf r = kernelGradient( ( a.array()*fb.array() ).matrix()*norm2.asDiagonal(), ones );
return - r + kernelGradient( a*norm_.asDiagonal(), b );
}
else /*if (ntype_ == NORMALIZE_BEFORE )*/ {
MatrixXf fa = lattice_.compute( a, true );
MatrixXf ones = MatrixXf::Ones( a.rows(), a.cols() );
VectorXf norm2 = norm_.array()*norm_.array();
MatrixXf r = kernelGradient( ( fa.array()*b.array() ).matrix()*norm2.asDiagonal(), ones );
return -r+kernelGradient( a, b*norm_.asDiagonal() );
}
}
示例3: normalizeMatch
// normalizeMatch respect to "In defense of eight point algorithm"
void normalizeMatch(MatrixXf &mat, Matrix3f &T1, Matrix3f &T2) {
MatrixXf pts1 = mat.leftCols<3>();
MatrixXf pts2 = mat.block(0, 3, mat.rows(), 3);
normalizePts(pts1, T1);
normalizePts(pts2, T2);
mat.leftCols<3>() = pts1;
mat.block(0, 3, mat.rows(), 3) = pts2;
}
示例4: compute
void Permutohedral::compute ( MatrixXf & out, const MatrixXf & in, bool reverse ) const
{
if( out.cols() != in.cols() || out.rows() != in.rows() )
out = 0*in;
if( in.rows() <= 2 )
seqCompute( out.data(), in.data(), in.rows(), reverse );
else
sseCompute( out.data(), in.data(), in.rows(), reverse );
}
示例5: blas_gemm
void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c)
{
int M = c.rows(); int N = c.cols(); int K = a.cols();
int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
sgemm_(¬rans,¬rans,&M,&N,&K,&fone,
const_cast<float*>(a.data()),&lda,
const_cast<float*>(b.data()),&ldb,&fone,
c.data(),&ldc);
}
示例6: pntMat
QPainterPath Layouter::mat2Path( const MatrixXf& pntMat )
{
QPainterPath path;
if (pntMat.rows() <= 0 || pntMat.cols() != 2)
return path;
path.moveTo(pntMat(0,0), pntMat(0,1));
for (int i = 1; i < pntMat.rows(); ++i)
path.lineTo(pntMat(i,0), pntMat(i,1));
return path;
}
示例7: singleModelRANSAC
bool singleModelRANSAC(const MatrixXf &data, int M, MatrixXf &inlier) {
int maxdegen = 10;
int dataSize = data.rows();
int psize = 4;
MatrixXf x1 = data.block(0, 0, data.rows(), 3);
MatrixXf x2 = data.block(0, 3, data.rows(), 3);
vector<int> sample;
MatrixXf pts1(4, 3);
MatrixXf pts2(4, 3);
int maxInlier = -1;
MatrixXf bestResidue;
for (int m = 0; m < M; m++) {
int degencount = 0;
int isdegen = 1;
while (isdegen==1 && degencount < maxdegen) {
degencount ++;
RandomSampling(psize, dataSize, sample);
for (int i = 0; i < psize; i++) {
pts1.row(i) = x1.row(sample[i]);
pts2.row(i) = x2.row(sample[i]);
}
if (sampleValidTest(pts1, pts2))
isdegen = 0;
}
if (isdegen) {
cout << "Cannot find valid p-subset" << endl;
return false;
}
Matrix3f local_H;
MatrixXf local_A;
fitHomography(pts1, pts2, local_H, local_A);
MatrixXf residue;
computeHomographyResidue(x1, x2, local_H, residue);
int inlierCount = (residue.array() < THRESHOLD).count();
if (inlierCount > maxInlier) {
maxInlier = inlierCount;
bestResidue = residue;
}
}
inlier.resize(maxInlier, data.cols());
int transferCounter = 0;
for (int i = 0; i < dataSize; i++) {
if (bestResidue(i) < THRESHOLD) {
inlier.row(transferCounter) = data.row(i);
transferCounter++;
}
}
if (transferCounter != maxInlier) {
cout << "RANSAC result size does not match!!!!" << endl;
return false;
}
return true;
}
示例8: SortPoints
void SortPoints(MatrixXf &x2d)
{
// the array is formed by [x1 y1 1,
// x2 y2 ]
MatrixXf x2d_aux=MatrixXf::Zero(x2d.rows(),3);
//////////////////////////////////////////////////////////////
//first sort point in y
///////////////////////////////////////////////////////////////
int i,j;
for (i =0; i<x2d.rows();i++){
for(j = i+1; j < x2d.rows(); j ++) {
if(x2d(j,1) < x2d(i,1)) {
float temp_x = x2d(i,0);
float temp_y = x2d(i,1);
x2d(0,i) = x2d(0,j);
x2d(1,i) = x2d(1,j);
x2d(0,j) = temp_x;
x2d(1,j) = temp_y;
}
}
}
/////////////////////////////////////////
//now order in X
for (i =0; i<x2d.rows();i++){
for(j = i+1; j < x2d.rows(); j ++) {
if(x2d(j,0) < x2d(i,0)) {
float temp_x = x2d(i,0);
float temp_y = x2d(i,1);
x2d(0,i) = x2d(0,j);
x2d(1,i) = x2d(1,j);
x2d(0,j) = temp_x;
x2d(1,j) = temp_y;
}
}
}
}
示例9: datapoints
vector<vector<float> > applyPCAtoVector2D(vector<vector<float> > &descriptorValues, MatrixXf &eigen_vects)
{
MatrixXf datapoints(descriptorValues.size(),descriptorValues[0].size());
for (int i = 0; i < descriptorValues.size(); ++i)
for (int j = 0; j < descriptorValues[0].size(); ++j)
datapoints(i, j) = descriptorValues[i][j];
MatrixXf reduceddatapnts = pca::transformPointMatrix(datapoints, eigen_vects);
vector<vector<float> > retfeatvects(reduceddatapnts.rows(), vector<float>(reduceddatapnts.cols()));
for (int i = 0; i < reduceddatapnts.rows(); ++i)
for (int j = 0; j < reduceddatapnts.cols(); ++j)
retfeatvects[i][j] = reduceddatapnts(i,j);
return retfeatvects;
}
示例10: run
void Neuromag::run()
{
MatrixXf matValue;
qint32 size = 0;
while(m_bIsRunning) {
if(m_pRawMatrixBuffer_In) {
//pop matrix
matValue = m_pRawMatrixBuffer_In->pop();
//Write raw data to fif file
if(m_bWriteToFile) {
size += matValue.rows()*matValue.cols() * 4;
if(size > MAX_DATA_LEN) {
size = 0;
this->splitRecordingFile();
}
m_mutex.lock();
if(m_pOutfid) {
m_pOutfid->write_raw_buffer(matValue.cast<double>());
}
m_mutex.unlock();
} else {
size = 0;
}
if(m_pRTMSA_Neuromag) {
m_pRTMSA_Neuromag->data()->setValue(this->calibrate(matValue));
}
}
}
}
示例11: logsumexp
VectorXf EMclustering::logsumexp(MatrixXf x, int dim)
{
int r = x.rows();
int c = x.cols();
VectorXf y(r);
MatrixXf tmp1(r,c);
VectorXf tmp2(r);
VectorXf s(r);
y = x.rowwise().maxCoeff();//cerr<<"y"<<y<<endl<<endl;
x = x.colwise() - y;
//cerr<<"x"<<x<<endl<<endl;
tmp1 = x.array().exp();
//cerr<<"t"<<tmp1<<endl<<endl;
tmp2 = tmp1.rowwise().sum();
//cerr<<"t"<<tmp2<<endl<<endl;
s = y.array() + tmp2.array().log();
for(int i=0;i<s.size();i++)
{
if(!isfinite(s(i)))
{
s(i) = y(i);
}
}
y.resize(0);
tmp1.resize(0,0);
tmp2.resize(0);
return s;
}
示例12: computeSensitivity
VectorXf param_sensitivity_widget::computeSensitivity(
MatrixXf ¶meterMatrix, VectorXf &responseVector)
{
MatrixXf Ctemp = parameterMatrix.transpose()*parameterMatrix;
MatrixXf C;
C = Ctemp.inverse();
VectorXf b = C*parameterMatrix.transpose()*responseVector;
VectorXf Y_hat = parameterMatrix*b;
int p = b.rows();
VectorXf sigma2Vec = responseVector-Y_hat;
float sigma2 = sigma2Vec.squaredNorm();
sigma2= sigma2/(parameterMatrix.rows() - p);
Ctemp = C*sigma2;
MatrixXf denominator = Ctemp.diagonal();
// Do element-wise division
VectorXf t = b;
for (int i = 0; i < b.rows(); i++)
{
t(i) = abs(b(i)/sqrt(denominator(i)));
}
return t;
}
示例13: doContinousHPI
void FiffSimulator::doContinousHPI(MatrixXf& matData)
{
//This only works with babyMEG HPI channels 400 ... 407
if(m_pFiffInfo && m_pHPIWidget && matData.rows() >= 407) {
if(m_pHPIWidget->wasLastFitOk()) {
// Load device to head transformation matrix from Fiff info
QMatrix3x3 rot;
for(int ir = 0; ir < 3; ir++) {
for(int ic = 0; ic < 3; ic++) {
rot(ir,ic) = m_pFiffInfo->dev_head_t.trans(ir,ic);
}
}
QQuaternion quatHPI = QQuaternion::fromRotationMatrix(rot);
// Write rotation quaternion to HPI Ch #1~3
matData.row(401) = MatrixXf::Constant(1,matData.cols(), quatHPI.x());
matData.row(402) = MatrixXf::Constant(1,matData.cols(), quatHPI.y());
matData.row(403) = MatrixXf::Constant(1,matData.cols(), quatHPI.z());
// Write translation vector to HPI Ch #4~6
matData.row(404) = MatrixXf::Constant(1,matData.cols(), m_pFiffInfo->dev_head_t.trans(0,3));
matData.row(405) = MatrixXf::Constant(1,matData.cols(), m_pFiffInfo->dev_head_t.trans(1,3));
matData.row(406) = MatrixXf::Constant(1,matData.cols(), m_pFiffInfo->dev_head_t.trans(2,3));
// Write GOF to HPI Ch #7
// Write goodness of fit (GOF)to HPI Ch #7
float dpfitError = 0.0;
float GOF = 1 - dpfitError;
matData.row(407) = MatrixXf::Constant(1,matData.cols(), GOF);
}
}
}
示例14: evaluate
double IntersectionOverUnion::evaluate( MatrixXf & d_mul_Q, const MatrixXf & Q ) const {
assert( gt_.rows() == Q.cols() );
const int N = Q.cols(), M = Q.rows();
d_mul_Q = 0*Q;
VectorXd in(M), un(M);
in.fill(0.f);
un.fill(1e-20);
for( int i=0; i<N; i++ ) {
if( 0 <= gt_[i] && gt_[i] < M ) {
in[ gt_[i] ] += Q(gt_[i],i);
un[ gt_[i] ] += 1;
for( int l=0; l<M; l++ )
if( l!=gt_[i] )
un[ l ] += Q(l,i);
}
}
for( int i=0; i<N; i++ )
if( 0 <= gt_[i] && gt_[i] < M ) {
for( int l=0; l<M; l++ )
if( l==gt_[i] )
d_mul_Q(l,i) = Q(l,i) / (un[l]*M);
else
d_mul_Q(l,i) = - Q(l,i) * in[l] / ( un[l] * un[l] * M);
}
return (in.array()/un.array()).sum()/M;
}
示例15: get_te_cost
float get_te_cost(int row, int col, int i, const MatrixXf & cost, const ExternNDArrayf & gradient_img) {
if ((row + i < 0) || (row + i >= cost.rows())) {
return INFINITY;
} else {
return (col == 0 ? 0 : cost(row+i, col-1)) + gradient_img(row, col);
}
}