本文整理汇总了C++中MatrixView::colsize方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixView::colsize方法的具体用法?C++ MatrixView::colsize怎么用?C++ MatrixView::colsize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MatrixView
的用法示例。
在下文中一共展示了MatrixView::colsize方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: LU_Inverse
void LU_Inverse(
const GenBandMatrix<T1>& LUx, const ptrdiff_t* p, MatrixView<T> minv)
{
TMVAssert(LUx.isSquare());
TMVAssert(minv.isSquare());
TMVAssert(minv.colsize() == LUx.colsize());
#ifdef XDEBUG
LowerTriMatrix<T,UnitDiag> L0(LUx.colsize());
LU_PackedPL_Unpack(LUx,p,L0.view());
UpperTriMatrix<T> U0 = BandMatrixViewOf(LUx,0,LUx.nhi());
Matrix<T> PLU = L0 * U0;
if (LUx.nlo() > 0) PLU.reversePermuteRows(p);
Matrix<T> minv2 = PLU.inverse();
#endif
if (minv.colsize() > 0) {
if ( !(minv.iscm() || minv.isrm())) {
Matrix<T,ColMajor> temp(minv.colsize(),minv.colsize());
LU_Inverse(LUx,p,temp.view());
minv = temp;
} else {
minv.setZero();
UpperTriMatrixView<T> U = minv.upperTri();
U = BandMatrixViewOf(LUx,0,LUx.nhi());
TriInverse(U,LUx.nhi());
LU_PackedPL_RDivEq(LUx,p,minv);
}
}
#ifdef XDEBUG
TMV_RealType(T) normdiff = Norm(PLU*minv - T(1));
TMV_RealType(T) kappa = Norm(PLU)*Norm(minv);
if (normdiff > 0.001*kappa*minv.colsize()) {
cerr<<"LUInverse:\n";
cerr<<"LUx = "<<LUx<<endl;
cerr<<"p = ";
for(ptrdiff_t i=0;i<LUx.colsize();i++) cerr<<p[i]<<" ";
cerr<<endl;
cerr<<"PLU = "<<PLU<<endl;
cerr<<"minv = "<<minv<<endl;
cerr<<"minv2 = "<<minv2<<endl;
cerr<<"m*minv = "<<PLU*minv<<endl;
cerr<<"minv*m = "<<minv*PLU<<endl;
cerr<<"Norm(m*minv - 1) = "<<normdiff<<endl;
cerr<<"kappa = "<<kappa<<endl;
abort();
}
#endif
}
示例2: LAPV
template <> void LapHessenberg(
MatrixView<std::complex<float> > A,
VectorView<std::complex<float> > Ubeta)
{
TMVAssert(A.iscm());
TMVAssert(A.colsize() >= A.rowsize());
TMVAssert(Ubeta.size() == A.rowsize());
TMVAssert(A.ct()==NonConj);
int n = A.rowsize();
int ilo = 1;
int ihi = n;
int lda = A.stepj();
int Lap_info=0;
#ifndef LAPNOWORK
int lwork = n*LAP_BLOCKSIZE;
std::complex<float>* work = LAP_CWork(lwork);
#endif
LAPNAME(cgehrd) (
LAPCM LAPV(n),LAPV(ilo),LAPV(ihi),
LAPP(A.ptr()),LAPV(lda),LAPP(Ubeta.ptr())
LAPWK(work) LAPVWK(lwork) LAPINFO);
Ubeta.ConjugateSelf();
#ifdef LAPNOWORK
LAP_Results(Lap_info,"cgehrd");
#else
LAP_Results(Lap_info,int(REAL(work[0])),m,n,lwork,"cgehrd");
#endif
}
示例3: TMVAssert
void LUDiv<T>::doMakeInverseATA(MatrixView<T> ata) const
{
TMVAssert(ata.colsize() == pimpl->LUx.colsize());
TMVAssert(ata.rowsize() == pimpl->LUx.colsize());
// (At A)^-1 = A^-1 (A^-1)t
// = (U^-1 L^-1 Pt) (P L^-1t U^-1t)
// = U^-1 L^-1 L^-1t U^-1t
//
// if PLU is really AT, then
// A^-1 = P L^-1T U^-1T
// (At A)^-1 = P L^-1T U^-1T U^-1* L^-1* Pt
LowerTriMatrixView<T> L = pimpl->LUx.lowerTri(UnitDiag);
UpperTriMatrixView<T> U = pimpl->LUx.upperTri();
if (pimpl->istrans) {
UpperTriMatrixView<T> uinv = ata.upperTri();
uinv = U.inverse();
ata = uinv.transpose() * uinv.conjugate();
ata /= L.transpose();
ata %= L.conjugate();
ata.reversePermuteCols(pimpl->P.getValues());
ata.reversePermuteRows(pimpl->P.getValues());
} else {
LowerTriMatrixView<T> linv = ata.lowerTri(UnitDiag);
linv = L.inverse();
ata = linv * linv.adjoint();
ata /= U;
ata %= U.adjoint();
}
}
示例4: TMVAssert
void HermBandSVDiv<T>::doRDiv(
const GenMatrix<T1>& m, MatrixView<T2> x) const
{
TMVAssert(m.colsize() == x.colsize());
TMVAssert(m.rowsize() == rowsize());
TMVAssert(x.rowsize() == colsize());
CallSV_RDiv(T(),pimpl->U,pimpl->S,pimpl->U.adjoint(),pimpl->kmax,m,x);
}
示例5: NonBlockHessenberg
static void NonBlockHessenberg(
MatrixView<T> A, VectorView<T> Ubeta)
{
#ifdef XDEBUG
cout<<"Start NonBlock Hessenberg Reduction: A = "<<A<<endl;
Matrix<T> A0(A);
#endif
// Decompose A into U H Ut
// H is a Hessenberg Matrix
// U is a Unitary Matrix
// On output, H is stored in the upper-Hessenberg part of A
// U is stored in compact form in the rest of A along with
// the vector Ubeta.
const ptrdiff_t N = A.rowsize();
TMVAssert(A.colsize() == A.rowsize());
TMVAssert(N > 0);
TMVAssert(Ubeta.size() == N-1);
TMVAssert(A.iscm() || A.isrm());
TMVAssert(!Ubeta.isconj());
TMVAssert(Ubeta.step()==1);
// We use Householder reflections to reduce A to the Hessenberg form:
T* Uj = Ubeta.ptr();
T det = 0; // Ignore Householder det calculations
for(ptrdiff_t j=0;j<N-1;++j,++Uj) {
#ifdef TMVFLDEBUG
TMVAssert(Uj >= Ubeta._first);
TMVAssert(Uj < Ubeta._last);
#endif
*Uj = Householder_Reflect(A.subMatrix(j+1,N,j,N),det);
if (*Uj != T(0))
Householder_LMult(A.col(j+2,N),*Uj,A.subMatrix(0,N,j+1,N).adjoint());
}
#ifdef XDEBUG
Matrix<T> U(N,N,T(0));
U.subMatrix(1,N,1,N) = A.subMatrix(1,N,0,N-1);
U.upperTri().setZero();
Vector<T> Ubeta2(N);
Ubeta2.subVector(1,N) = Ubeta;
Ubeta2(0) = T(0);
GetQFromQR(U.view(),Ubeta2);
Matrix<T> H = A;
if (N>2) LowerTriMatrixViewOf(H).offDiag(2).setZero();
Matrix<T> AA = U*H*U.adjoint();
if (Norm(A0-AA) > 0.001*Norm(A0)) {
cerr<<"NonBlock Hessenberg: A = "<<Type(A)<<" "<<A0<<endl;
cerr<<"A = "<<A<<endl;
cerr<<"Ubeta = "<<Ubeta<<endl;
cerr<<"U = "<<U<<endl;
cerr<<"H = "<<H<<endl;
cerr<<"UHUt = "<<AA<<endl;
abort();
}
#endif
}
示例6: NonLapHessenberg
static inline void NonLapHessenberg(
MatrixView<T> A, VectorView<T> Ubeta)
{
TMVAssert(A.rowsize() == A.colsize());
TMVAssert(A.rowsize() > 0);
TMVAssert(Ubeta.size() == A.rowsize()-1);
#if 0
if (A.rowsize() > HESS_BLOCKSIZE)
BlockHessenberg(A,Ubeta,Vbeta,D,E,det);
else
#endif
NonBlockHessenberg(A,Ubeta);
}
示例7: Hessenberg
static inline void Hessenberg(
MatrixView<T> A, VectorView<T> Ubeta)
{
TMVAssert(A.colsize() == A.rowsize());
TMVAssert(Ubeta.size() == A.rowsize()-1);
TMVAssert(A.isrm() || A.iscm());
TMVAssert(A.ct()==NonConj);
TMVAssert(Ubeta.step() == 1);
if (A.rowsize() > 0) {
#ifdef LAP
if (A.iscm())
LapHessenberg(A,Ubeta);
else
#endif
NonLapHessenberg(A,Ubeta);
}
}
示例8: SymSquare
void SymSquare(MatrixView<T> A)
{
const ptrdiff_t N = A.colsize();
if (N == 1) {
const T A00 = *A.ptr();
#ifdef TMVFLDEBUG
TMVAssert(A.ptr() >= A._first);
TMVAssert(A.ptr() < A._last);
#endif
if (herm)
*A.ptr() = TMV_NORM(TMV_REAL(A00));
else
*A.ptr() = TMV_SQR(A00);
} else {
const ptrdiff_t K = N/2;
MatrixView<T> A00 = A.subMatrix(0,K,0,K);
MatrixView<T> A10 = A.subMatrix(K,N,0,K);
MatrixView<T> A01 = A.subMatrix(0,K,K,N);
MatrixView<T> A11 = A.subMatrix(K,N,K,N);
MatrixView<T> A10t = herm ? A10.adjoint() : A10.transpose();
// [ A00 A10t ] [ A00 A10t ]
// [ A10 A11 ] [ A10 A11 ]
// = [ A00^2 + A10t A10 A00 A10t + A10t A11 ]
// [ A10 A00 + A11 A10 A10 A10t + A11^2 ]
// A10 stores the actual data for A10
// We can therefore write to A01 as a temp matrix.
A01 = A00 * A10t;
A01 += A10t * A11;
SymSquare<herm>(A00);
A00 += A10t*A10;
SymSquare<herm>(A11);
A11 += A10*A10t;
A10t = A01;
}
}
示例9: BlockHessenberg
static void BlockHessenberg(
MatrixView<T> A, VectorView<T> Ubeta)
{
// Much like the block version of Bidiagonalize, we try to maintain
// the operation of several successive Householder matrices in
// a block form, where the net Block Householder is I - YZYt.
//
// But as with the bidiagonlization algorithm (and unlike a simple
// block QR decomposition), we update the matrix from both the left
// and the right, so we also need to keep track of the product
// ZYtm in addition.
//
// The block update at the end of the block loop is
// m' = (I-YZYt) m (I-YZtYt)
//
// The Y matrix is stored in the first K columns of m,
// and the Hessenberg portion of these columns is updated as we go.
// For the right-hand-side update, m -= mYZtYt, the m on the right
// needs to be the full original matrix m, including the original
// versions of these K columns. Therefore, we can't wait until
// the end for this calculation.
//
// Instead, we keep track of mYZt as we progress, so the final update
// is:
//
// m' = (I-YZYt) (m - mYZt Y)
//
// We also need to do this same calculation for each column as we
// progress through the block.
//
const ptrdiff_t N = A.rowsize();
#ifdef XDEBUG
Matrix<T> A0(A);
#endif
TMVAssert(A.rowsize() == A.colsize());
TMVAssert(N > 0);
TMVAssert(Ubeta.size() == N-1);
TMVAssert(!Ubeta.isconj());
TMVAssert(Ubeta.step()==1);
ptrdiff_t ncolmax = MIN(HESS_BLOCKSIZE,N-1);
Matrix<T,RowMajor> mYZt_full(N,ncolmax);
UpperTriMatrix<T,NonUnitDiag|ColMajor> Z_full(ncolmax);
T det(0); // Ignore Householder Determinant calculations
T* Uj = Ubeta.ptr();
for(ptrdiff_t j1=0;j1<N-1;) {
ptrdiff_t j2 = MIN(N-1,j1+HESS_BLOCKSIZE);
ptrdiff_t ncols = j2-j1;
MatrixView<T> mYZt = mYZt_full.subMatrix(0,N-j1,0,ncols);
UpperTriMatrixView<T> Z = Z_full.subTriMatrix(0,ncols);
for(ptrdiff_t j=j1,jj=0;j<j2;++j,++jj,++Uj) { // jj = j-j1
// Update current column of A
//
// m' = (I - YZYt) (m - mYZt Yt)
// A(0:N,j)' = A(0:N,j) - mYZt(0:N,0:j) Y(j,0:j)t
A.col(j,j1+1,N) -= mYZt.Cols(0,j) * A.row(j,0,j).Conjugate();
//
// A(0:N,j)'' = A(0:N,j) - Y Z Yt A(0:N,j)'
//
// Let Y = (L) where L is unit-diagonal, lower-triangular,
// (M) and M is rectangular
//
LowerTriMatrixView<T> L =
LowerTriMatrixViewOf(A.subMatrix(j1+1,j+1,j1,j),UnitDiag);
MatrixView<T> M = A.subMatrix(j+1,N,j1,j);
// Use the last column of Z as temporary storage for Yt A(0:N,j)'
VectorView<T> YtAj = Z.col(jj,0,jj);
YtAj = L.adjoint() * A.col(j,j1+1,j+1);
YtAj += M.adjoint() * A.col(j,j+1,N);
YtAj = Z.subTriMatrix(0,jj) * YtAj;
A.col(j,j1+1,j+1) -= L * YtAj;
A.col(j,j+1,N) -= M * YtAj;
// Do the Householder reflection
VectorView<T> u = A.col(j,j+1,N);
T bu = Householder_Reflect(u,det);
#ifdef TMVFLDEBUG
TMVAssert(Uj >= Ubeta._first);
TMVAssert(Uj < Ubeta._last);
#endif
*Uj = bu;
// Save the top of the u vector, which isn't actually part of u
T& Atemp = *u.cptr();
TMVAssert(IMAG(Atemp) == RealType(T)(0));
RealType(T) Aorig = REAL(Atemp);
Atemp = RealType(T)(1);
// Update Z
VectorView<T> Zj = Z.col(jj,0,jj);
Zj = -bu * M.adjoint() * u;
Zj = Z * Zj;
Z(jj,jj) = -bu;
// Update mYtZt:
//.........这里部分代码省略.........