当前位置: 首页>>代码示例>>C++>>正文


C++ MatrixType::adjoint方法代码示例

本文整理汇总了C++中MatrixType::adjoint方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixType::adjoint方法的具体用法?C++ MatrixType::adjoint怎么用?C++ MatrixType::adjoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MatrixType的用法示例。


在下文中一共展示了MatrixType::adjoint方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: symmEig

template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     GeneralizedEigenSolver.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType spdA =  a.adjoint() * a + a1.adjoint() * a1;
  MatrixType spdB =  b.adjoint() * b + b1.adjoint() * b1;

  // lets compare to GeneralizedSelfAdjointEigenSolver
  GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
  GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);

  VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);

  VectorType realEigenvalues = eig.eigenvalues().real();
  std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
  VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
}
开发者ID:anders-dc,项目名称:cppfem,代码行数:32,代码来源:eigensolver_generalized_real.cpp

示例2: lu

template<typename MatrixType> void lu_invertible()
{
  /* this test covers the following files:
     LU.h
  */
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  int size = ei_random<int>(10,200);

  MatrixType m1(size, size), m2(size, size), m3(size, size);
  m1 = MatrixType::Random(size,size);

  if (ei_is_same_type<RealScalar,float>::ret)
  {
    // let's build a matrix more stable to inverse
    MatrixType a = MatrixType::Random(size,size*2);
    m1 += a * a.adjoint();
  }

  LU<MatrixType> lu(m1);
  VERIFY(0 == lu.dimensionOfKernel());
  VERIFY(size == lu.rank());
  VERIFY(lu.isInjective());
  VERIFY(lu.isSurjective());
  VERIFY(lu.isInvertible());
  VERIFY(lu.image().lu().isInvertible());
  m3 = MatrixType::Random(size,size);
  lu.solve(m3, &m2);
  VERIFY_IS_APPROX(m3, m1*m2);
  VERIFY_IS_APPROX(m2, lu.inverse()*m3);
  m3 = MatrixType::Random(size,size);
  VERIFY(lu.solve(m3, &m2));
}
开发者ID:hrehfeld,项目名称:ezrgraphicsdemo,代码行数:32,代码来源:lu.cpp

示例3: dontalign

void dontalign(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;

  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType a = MatrixType::Random(rows,cols);
  SquareMatrixType square = SquareMatrixType::Random(rows,rows);
  VectorType v = VectorType::Random(rows);

  VERIFY_IS_APPROX(v, square * square.colPivHouseholderQr().solve(v));
  square = square.inverse().eval();
  a = square * a;
  square = square*square;
  v = square * v;
  v = a.adjoint() * v;
  VERIFY(square.determinant() != Scalar(0));

  // bug 219: MapAligned() was giving an assert with EIGEN_DONT_ALIGN, because Map Flags were miscomputed
  Scalar* array = internal::aligned_new<Scalar>(rows);
  v = VectorType::MapAligned(array, rows);
  internal::aligned_delete(array, rows);
}
开发者ID:SimoneRinco,项目名称:Finite-Volumes-Immersed-Boundary-Methods,代码行数:26,代码来源:dontalign.cpp

示例4: eigensolver

template<typename MatrixType> void eigensolver(const MatrixType& m)
{
  /* this test covers the following files:
     EigenSolver.h
  */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  // RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;

  EigenSolver<MatrixType> ei0(symmA);
  VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
  VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
    (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));

  EigenSolver<MatrixType> ei1(a);
  VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
  VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
                   ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());

}
开发者ID:CaptainFalco,项目名称:OpenPilot,代码行数:31,代码来源:eigen2_eigensolver.cpp

示例5: qr

template<typename MatrixType> void qr(const MatrixType& m)
{
  /* this test covers the following files:
     QR.h
  */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;

  MatrixType a = MatrixType::Random(rows,cols);
  QR<MatrixType> qrOfA(a);
  VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
  VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());

  SquareMatrixType b = a.adjoint() * a;

  // check tridiagonalization
  Tridiagonalization<SquareMatrixType> tridiag(b);
  VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());

  // check hessenberg decomposition
  HessenbergDecomposition<SquareMatrixType> hess(b);
  VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
  VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
  b = SquareMatrixType::Random(cols,cols);
  hess.compute(b);
  VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
}
开发者ID:hrehfeld,项目名称:ezrgraphicsdemo,代码行数:31,代码来源:qr.cpp

示例6: svd

template<typename MatrixType> void svd(const MatrixType& m)
{
  /* this test covers the following files:
     SVD.h
  */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  MatrixType a = MatrixType::Random(rows,cols);
  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
    Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
  Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);

  RealScalar largerEps = test_precision<RealScalar>();
  if (ei_is_same_type<RealScalar,float>::ret)
    largerEps = 1e-3f;

  {
    SVD<MatrixType> svd(a);
    MatrixType sigma = MatrixType::Zero(rows,cols);
    MatrixType matU  = MatrixType::Zero(rows,rows);
    sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
    matU.block(0,0,rows,cols) = svd.matrixU();
    VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
  }


  if (rows==cols)
  {
    if (ei_is_same_type<RealScalar,float>::ret)
    {
      MatrixType a1 = MatrixType::Random(rows,cols);
      a += a * a.adjoint() + a1 * a1.adjoint();
    }
    SVD<MatrixType> svd(a);
    svd.solve(b, &x);
    VERIFY_IS_APPROX(a * x,b);
  }


  if(rows==cols)
  {
    SVD<MatrixType> svd(a);
    MatrixType unitary, positive;
    svd.computeUnitaryPositive(&unitary, &positive);
    VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
    VERIFY_IS_APPROX(positive, positive.adjoint());
    for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
    VERIFY_IS_APPROX(unitary*positive, a);

    svd.computePositiveUnitary(&positive, &unitary);
    VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
    VERIFY_IS_APPROX(positive, positive.adjoint());
    for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
    VERIFY_IS_APPROX(positive*unitary, a);
  }
}
开发者ID:OSVR,项目名称:eigen-kalman,代码行数:59,代码来源:svd.cpp

示例7: eigensolver

template<typename MatrixType> void eigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     EigenSolver.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;

  EigenSolver<MatrixType> ei0(symmA);
  VERIFY_IS_EQUAL(ei0.info(), Success);
  VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
  VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
    (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));

  EigenSolver<MatrixType> ei1(a);
  VERIFY_IS_EQUAL(ei1.info(), Success);
  VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
  VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
                   ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
  VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
  VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());

  EigenSolver<MatrixType> ei2;
  ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
  VERIFY_IS_EQUAL(ei2.info(), Success);
  VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
  VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
  if (rows > 2) {
    ei2.setMaxIterations(1).compute(a);
    VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
    VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
  }

  EigenSolver<MatrixType> eiNoEivecs(a, false);
  VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
  VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
  VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));

  if (rows > 2)
  {
    // Test matrix with NaN
    a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    EigenSolver<MatrixType> eiNaN(a);
    VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
  }
}
开发者ID:Aerobota,项目名称:eigen,代码行数:59,代码来源:eigensolver_generic.cpp

示例8: eigensolver

template<typename MatrixType> void eigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     ComplexEigenSolver.h, and indirectly ComplexSchur.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a;

  ComplexEigenSolver<MatrixType> ei0(symmA);
  VERIFY_IS_EQUAL(ei0.info(), Success);
  VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());

  ComplexEigenSolver<MatrixType> ei1(a);
  VERIFY_IS_EQUAL(ei1.info(), Success);
  VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
  // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
  // another algorithm so results may differ slightly
  verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());

  ComplexEigenSolver<MatrixType> ei2;
  ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
  VERIFY_IS_EQUAL(ei2.info(), Success);
  VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
  VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
  if (rows > 2) {
    ei2.setMaxIterations(1).compute(a);
    VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
    VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
  }

  ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
  VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
  VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());

  // Regression test for issue #66
  MatrixType z = MatrixType::Zero(rows,cols);
  ComplexEigenSolver<MatrixType> eiz(z);
  VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));

  if (rows > 1)
  {
    // Test matrix with NaN
    a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    ComplexEigenSolver<MatrixType> eiNaN(a);
    VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
  }
}
开发者ID:Aerobota,项目名称:eigen,代码行数:57,代码来源:eigensolver_complex.cpp

示例9: b

template<typename MatrixType> void upperbidiag(const MatrixType& m)
{
  const typename MatrixType::Index rows = m.rows();
  const typename MatrixType::Index cols = m.cols();

  typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime,  MatrixType::ColsAtCompileTime> RealMatrixType;
  typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime,  MatrixType::RowsAtCompileTime> TransposeMatrixType;

  MatrixType a = MatrixType::Random(rows,cols);
  internal::UpperBidiagonalization<MatrixType> ubd(a);
  RealMatrixType b(rows, cols);
  b.setZero();
  b.block(0,0,cols,cols) = ubd.bidiagonal();
  MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint();
  VERIFY_IS_APPROX(a,c);
  TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint();
  VERIFY_IS_APPROX(a.adjoint(),d);
}
开发者ID:1165048017,项目名称:convnet-1,代码行数:18,代码来源:upperbidiagonalization.cpp

示例10: benchLLT

__attribute__ ((noinline)) void benchLLT(const MatrixType& m)
{
  int rows = m.rows();
  int cols = m.cols();

  double cost = 0;
  for (int j=0; j<rows; ++j)
  {
    int r = std::max(rows - j -1,0);
    cost += 2*(r*j+r+j);
  }

  int repeats = (REPEAT*1000)/(rows*rows);

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;

  MatrixType a = MatrixType::Random(rows,cols);
  SquareMatrixType covMat =  a * a.adjoint();

  BenchTimer timerNoSqrt, timerSqrt;

  Scalar acc = 0;
  int r = internal::random<int>(0,covMat.rows()-1);
  int c = internal::random<int>(0,covMat.cols()-1);
  for (int t=0; t<TRIES; ++t)
  {
    timerNoSqrt.start();
    for (int k=0; k<repeats; ++k)
    {
      LDLT<SquareMatrixType> cholnosqrt(covMat);
      acc += cholnosqrt.matrixL().coeff(r,c);
    }
    timerNoSqrt.stop();
  }

  for (int t=0; t<TRIES; ++t)
  {
    timerSqrt.start();
    for (int k=0; k<repeats; ++k)
    {
      LLT<SquareMatrixType> chol(covMat);
      acc += chol.matrixL().coeff(r,c);
    }
    timerSqrt.stop();
  }

  if (MatrixType::RowsAtCompileTime==Dynamic)
    std::cout << "dyn   ";
  else
    std::cout << "fixed ";
  std::cout << covMat.rows() << " \t"
            << (timerNoSqrt.best()) / repeats << "s "
            << "(" << 1e-9 * cost*repeats/timerNoSqrt.best() << " GFLOPS)\t"
            << (timerSqrt.best()) / repeats << "s "
            << "(" << 1e-9 * cost*repeats/timerSqrt.best() << " GFLOPS)\n";


  #ifdef BENCH_GSL
  if (MatrixType::RowsAtCompileTime==Dynamic)
  {
    timerSqrt.reset();

    gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols());
    gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols());

    eiToGsl(covMat, &gslCovMat);
    for (int t=0; t<TRIES; ++t)
    {
      timerSqrt.start();
      for (int k=0; k<repeats; ++k)
      {
        gsl_matrix_memcpy(gslCopy,gslCovMat);
        gsl_linalg_cholesky_decomp(gslCopy);
        acc += gsl_matrix_get(gslCopy,r,c);
      }
      timerSqrt.stop();
    }

    std::cout << " | \t"
              << timerSqrt.value() * REPEAT / repeats << "s";

    gsl_matrix_free(gslCovMat);
  }
  #endif
  std::cout << "\n";
  // make sure the compiler does not optimize too much
  if (acc==123)
    std::cout << acc;
}
开发者ID:13221325403,项目名称:openbr,代码行数:90,代码来源:benchCholesky.cpp

示例11: selfadjointeigensolver

template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
  MatrixType symmC = symmA;
  
  svd_fill_random(symmA,Symmetric);

  symmA.template triangularView<StrictlyUpper>().setZero();
  symmC.template triangularView<StrictlyUpper>().setZero();

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
  symmB.template triangularView<StrictlyUpper>().setZero();
  
  CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) );

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  // generalized eigen pb
  GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);

  SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
  VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
  VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
  
  // generalized eigen problem Ax = lBx
  eiSymmGen.compute(symmC, symmB,Ax_lBx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
          symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem BAx = lx
  eiSymmGen.compute(symmC, symmB,BAx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem ABx = lx
  eiSymmGen.compute(symmC, symmB,ABx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));


  eiSymm.compute(symmC);
  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
  VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));

  SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  eiSymmUninitialized.compute(symmA, false);
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  // test Tridiagonalization's methods
  Tridiagonalization<MatrixType> tridiag(symmC);
  VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal());
  VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>());
  Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT();
  if(rows>1 && cols>1) {
    // FIXME check that upper and lower part are 0:
    //VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero());
  }
  VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal());
  VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>());
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
  
  // Test computation of eigenvalues from tridiagonal matrix
  if(rows > 1)
  {
    SelfAdjointEigenSolver<MatrixType> eiSymmTridiag;
    eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors);
    VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues());
    VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose());
  }
//.........这里部分代码省略.........
开发者ID:mastoo,项目名称:pcollection,代码行数:101,代码来源:eigensolver_selfadjoint.cpp

示例12: selfadjointeigensolver

template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
  symmA.template triangularView<StrictlyUpper>().setZero();

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
  symmB.template triangularView<StrictlyUpper>().setZero();

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  // generalized eigen pb
  GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);

  #ifdef HAS_GSL
  if (internal::is_same<RealScalar,double>::value)
  {
    // restore symmA and symmB.
    symmA = MatrixType(symmA.template selfadjointView<Lower>());
    symmB = MatrixType(symmB.template selfadjointView<Lower>());
    typedef GslTraits<Scalar> Gsl;
    typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
    typename GslTraits<RealScalar>::Vector gEval=0;
    RealVectorType _eval;
    MatrixType _evec;
    convert<MatrixType>(symmA, gSymmA);
    convert<MatrixType>(symmB, gSymmB);
    convert<MatrixType>(symmA, gEvec);
    gEval = GslTraits<RealScalar>::createVector(rows);

    Gsl::eigen_symm(gSymmA, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);

    // test gsl itself !
    VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));

    // compare with eigen
    VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwiseAbs(), eiSymm.eigenvectors().cwiseAbs());

    // generalized pb
    Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);
    // test GSL itself:
    VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));

    // compare with eigen
    MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse();
    VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs());

    Gsl::free(gSymmA);
    Gsl::free(gSymmB);
    GslTraits<RealScalar>::free(gEval);
    Gsl::free(gEvec);
  }
  #endif

  VERIFY_IS_EQUAL(eiSymm.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
          eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());

  SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
  VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
  VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());

  // generalized eigen problem Ax = lBx
  eiSymmGen.compute(symmA, symmB,Ax_lBx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
          symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem BAx = lx
  eiSymmGen.compute(symmA, symmB,BAx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem ABx = lx
  eiSymmGen.compute(symmA, symmB,ABx_lx);
//.........这里部分代码省略.........
开发者ID:151706061,项目名称:ParaView,代码行数:101,代码来源:eigensolver_selfadjoint.cpp

示例13: selfadjointeigensolver

template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  // generalized eigen pb
  SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);

  #ifdef HAS_GSL
  if (ei_is_same_type<RealScalar,double>::ret)
  {
    typedef GslTraits<Scalar> Gsl;
    typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
    typename GslTraits<RealScalar>::Vector gEval=0;
    RealVectorType _eval;
    MatrixType _evec;
    convert<MatrixType>(symmA, gSymmA);
    convert<MatrixType>(symmB, gSymmB);
    convert<MatrixType>(symmA, gEvec);
    gEval = GslTraits<RealScalar>::createVector(rows);

    Gsl::eigen_symm(gSymmA, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);

    // test gsl itself !
    VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));

    // compare with eigen
    VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());

    // generalized pb
    Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);
    // test GSL itself:
    VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));

    // compare with eigen
    MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse();
    VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs());

    Gsl::free(gSymmA);
    Gsl::free(gSymmB);
    GslTraits<RealScalar>::free(gEval);
    Gsl::free(gEvec);
  }
  #endif

  VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
          eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));

  // generalized eigen problem Ax = lBx
  VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
          symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
  VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA);
  VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
}
开发者ID:CaptainFalco,项目名称:OpenPilot,代码行数:82,代码来源:eigen2_eigensolver.cpp

示例14: selfadjointeigensolver

template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
  MatrixType symmC = symmA;

  // randomly nullify some rows/columns
  {
    Index count = 1;//internal::random<Index>(-cols,cols);
    for(Index k=0; k<count; ++k)
    {
      Index i = internal::random<Index>(0,cols-1);
      symmA.row(i).setZero();
      symmA.col(i).setZero();
    }
  }

  symmA.template triangularView<StrictlyUpper>().setZero();
  symmC.template triangularView<StrictlyUpper>().setZero();

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
  symmB.template triangularView<StrictlyUpper>().setZero();

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  SelfAdjointEigenSolver<MatrixType> eiDirect;
  eiDirect.computeDirect(symmA);
  // generalized eigen pb
  GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);

  VERIFY_IS_EQUAL(eiSymm.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
          eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());

  VERIFY_IS_EQUAL(eiDirect.info(), Success);
  VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
          eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
  VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());

  SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
  VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
  VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());

  // generalized eigen problem Ax = lBx
  eiSymmGen.compute(symmC, symmB,Ax_lBx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
          symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem BAx = lx
  eiSymmGen.compute(symmC, symmB,BAx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  // generalized eigen problem ABx = lx
  eiSymmGen.compute(symmC, symmB,ABx_lx);
  VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
  VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
         (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));


  eiSymm.compute(symmC);
  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
  VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
  VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));

  SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  eiSymmUninitialized.compute(symmA, false);
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
  VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());

  // test Tridiagonalization's methods
  Tridiagonalization<MatrixType> tridiag(symmC);
  // FIXME tridiag.matrixQ().adjoint() does not work
//.........这里部分代码省略.........
开发者ID:aeslaughter,项目名称:libmesh,代码行数:101,代码来源:eigensolver_selfadjoint.cpp


注:本文中的MatrixType::adjoint方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。