当前位置: 首页>>代码示例>>C++>>正文


C++ MatchExpression::numChildren方法代码示例

本文整理汇总了C++中MatchExpression::numChildren方法的典型用法代码示例。如果您正苦于以下问题:C++ MatchExpression::numChildren方法的具体用法?C++ MatchExpression::numChildren怎么用?C++ MatchExpression::numChildren使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MatchExpression的用法示例。


在下文中一共展示了MatchExpression::numChildren方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: planSubqueries

    Status SubplanRunner::planSubqueries() {
        MatchExpression* theOr = _query->root();

        for (size_t i = 0; i < _plannerParams.indices.size(); ++i) {
            const IndexEntry& ie = _plannerParams.indices[i];
            _indexMap[ie.keyPattern] = i;
            QLOG() << "Subplanner: index " << i << " is " << ie.toString() << endl;
        }

        const WhereCallbackReal whereCallback(_collection->ns().db());

        for (size_t i = 0; i < theOr->numChildren(); ++i) {
            // Turn the i-th child into its own query.
            MatchExpression* orChild = theOr->getChild(i);
            CanonicalQuery* orChildCQ;
            Status childCQStatus = CanonicalQuery::canonicalize(*_query,
                                                                orChild,
                                                                &orChildCQ,
                                                                whereCallback);
            if (!childCQStatus.isOK()) {
                mongoutils::str::stream ss;
                ss << "Subplanner: Can't canonicalize subchild " << orChild->toString()
                   << " " << childCQStatus.reason();
                return Status(ErrorCodes::BadValue, ss);
            }

            // Make sure it gets cleaned up.
            auto_ptr<CanonicalQuery> safeOrChildCQ(orChildCQ);

            // Plan the i-th child.
            vector<QuerySolution*> solutions;

            // We don't set NO_TABLE_SCAN because peeking at the cache data will keep us from 
            // considering any plan that's a collscan.
            QLOG() << "Subplanner: planning child " << i << " of " << theOr->numChildren();
            Status status = QueryPlanner::plan(*safeOrChildCQ, _plannerParams, &solutions);

            if (!status.isOK()) {
                mongoutils::str::stream ss;
                ss << "Subplanner: Can't plan for subchild " << orChildCQ->toString()
                   << " " << status.reason();
                return Status(ErrorCodes::BadValue, ss);
            }
            QLOG() << "Subplanner: got " << solutions.size() << " solutions";

            if (0 == solutions.size()) {
                // If one child doesn't have an indexed solution, bail out.
                mongoutils::str::stream ss;
                ss << "Subplanner: No solutions for subchild " << orChildCQ->toString();
                return Status(ErrorCodes::BadValue, ss);
            }

            // Hang onto the canonicalized subqueries and the corresponding query solutions
            // so that they can be used in subplan running later on.
            _cqs.push(safeOrChildCQ.release());
            _solutions.push(solutions);
        }

        return Status::OK();
    }
开发者ID:MohdVara,项目名称:mongo,代码行数:60,代码来源:subplan_runner.cpp

示例2: normalizeTree

// static
MatchExpression* CanonicalQuery::normalizeTree(MatchExpression* root) {
    // root->isLogical() is true now.  We care about AND, OR, and NOT. NOR currently scares us.
    if (MatchExpression::AND == root->matchType() || MatchExpression::OR == root->matchType()) {
        // We could have AND of AND of AND.  Make sure we clean up our children before merging
        // them.
        // UNITTEST 11738048
        for (size_t i = 0; i < root->getChildVector()->size(); ++i) {
            (*root->getChildVector())[i] = normalizeTree(root->getChild(i));
        }

        // If any of our children are of the same logical operator that we are, we remove the
        // child's children and append them to ourselves after we examine all children.
        std::vector<MatchExpression*> absorbedChildren;

        for (size_t i = 0; i < root->numChildren();) {
            MatchExpression* child = root->getChild(i);
            if (child->matchType() == root->matchType()) {
                // AND of an AND or OR of an OR.  Absorb child's children into ourself.
                for (size_t j = 0; j < child->numChildren(); ++j) {
                    absorbedChildren.push_back(child->getChild(j));
                }
                // TODO(opt): this is possibly n^2-ish
                root->getChildVector()->erase(root->getChildVector()->begin() + i);
                child->getChildVector()->clear();
                // Note that this only works because we cleared the child's children
                delete child;
                // Don't increment 'i' as the current child 'i' used to be child 'i+1'
            } else {
                ++i;
            }
        }

        root->getChildVector()->insert(
            root->getChildVector()->end(), absorbedChildren.begin(), absorbedChildren.end());

        // AND of 1 thing is the thing, OR of 1 thing is the thing.
        if (1 == root->numChildren()) {
            MatchExpression* ret = root->getChild(0);
            root->getChildVector()->clear();
            delete root;
            return ret;
        }
    } else if (MatchExpression::NOT == root->matchType()) {
        // Normalize the rest of the tree hanging off this NOT node.
        NotMatchExpression* nme = static_cast<NotMatchExpression*>(root);
        MatchExpression* child = nme->releaseChild();
        // normalizeTree(...) takes ownership of 'child', and then
        // transfers ownership of its return value to 'nme'.
        nme->resetChild(normalizeTree(child));
    } else if (MatchExpression::ELEM_MATCH_VALUE == root->matchType()) {
        // Just normalize our children.
        for (size_t i = 0; i < root->getChildVector()->size(); ++i) {
            (*root->getChildVector())[i] = normalizeTree(root->getChild(i));
        }
    }

    return root;
}
开发者ID:hcj1991pp,项目名称:mongo,代码行数:59,代码来源:canonical_query.cpp

示例3: normalizeTree

    // static
    MatchExpression* CanonicalQuery::normalizeTree(MatchExpression* root) {
        // root->isLogical() is true now.  We care about AND and OR.  Negations currently scare us.
        if (MatchExpression::AND == root->matchType() || MatchExpression::OR == root->matchType()) {
            // We could have AND of AND of AND.  Make sure we clean up our children before merging
            // them.
            // UNITTEST 11738048
            for (size_t i = 0; i < root->getChildVector()->size(); ++i) {
                (*root->getChildVector())[i] = normalizeTree(root->getChild(i));
            }

            // If any of our children are of the same logical operator that we are, we remove the
            // child's children and append them to ourselves after we examine all children.
            vector<MatchExpression*> absorbedChildren;

            for (size_t i = 0; i < root->numChildren();) {
                MatchExpression* child = root->getChild(i);
                if (child->matchType() == root->matchType()) {
                    // AND of an AND or OR of an OR.  Absorb child's children into ourself.
                    for (size_t j = 0; j < child->numChildren(); ++j) {
                        absorbedChildren.push_back(child->getChild(j));
                    }
                    // TODO(opt): this is possibly n^2-ish
                    root->getChildVector()->erase(root->getChildVector()->begin() + i);
                    child->getChildVector()->clear();
                    // Note that this only works because we cleared the child's children
                    delete child;
                    // Don't increment 'i' as the current child 'i' used to be child 'i+1'
                }
                else {
                    ++i;
                }
            }

            root->getChildVector()->insert(root->getChildVector()->end(),
                                           absorbedChildren.begin(),
                                           absorbedChildren.end());

            // AND of 1 thing is the thing, OR of 1 thing is the thing.
            if (1 == root->numChildren()) {
                MatchExpression* ret = root->getChild(0);
                root->getChildVector()->clear();
                delete root;
                return ret;
            }
        }

        return root;
    }
开发者ID:dreamquster,项目名称:mongo,代码行数:49,代码来源:canonical_query.cpp

示例4: isIndependentOf

bool isIndependentOf(const MatchExpression& expr, const std::set<std::string>& pathSet) {
    if (expr.isLogical()) {
        // Any logical expression is independent of 'pathSet' if all its children are independent of
        // 'pathSet'.
        for (size_t i = 0; i < expr.numChildren(); i++) {
            if (!isIndependentOf(*expr.getChild(i), pathSet)) {
                return false;
            }
        }
        return true;
    }

    // At this point, we know 'expr' is a leaf. If it is an elemMatch, we do not attempt to
    // determine if it is independent or not, and instead just return false.
    return !isElemMatch(expr) && isLeafIndependentOf(expr.path(), pathSet);
}
开发者ID:CaffeineForCode,项目名称:mongo,代码行数:16,代码来源:expression_algo.cpp

示例5: _extractFullEqualityMatches

    static Status _extractFullEqualityMatches(const MatchExpression& root,
                                              const FieldRefSet* fullPathsToExtract,
                                              EqualityMatches* equalities) {

        if (root.matchType() == MatchExpression::EQ) {

            // Extract equality matches
            const EqualityMatchExpression& eqChild =
                static_cast<const EqualityMatchExpression&>(root);

            FieldRef path(eqChild.path());

            if (fullPathsToExtract) {

                FieldRefSet conflictPaths;
                fullPathsToExtract->findConflicts(&path, &conflictPaths);

                // Ignore if this path is unrelated to the full paths
                if (conflictPaths.empty())
                    return Status::OK();

                // Make sure we're a prefix of all the conflict paths
                Status status = checkPathIsPrefixOf(path, conflictPaths);
                if (!status.isOK())
                    return status;
            }

            Status status = checkEqualityConflicts(*equalities, path);
            if (!status.isOK())
                return status;

            equalities->insert(make_pair(eqChild.path(), &eqChild));
        }
        else if (root.matchType() == MatchExpression::AND) {

            // Further explore $and matches
            for (size_t i = 0; i < root.numChildren(); ++i) {
                MatchExpression* child = root.getChild(i);
                Status status = _extractFullEqualityMatches(*child, fullPathsToExtract, equalities);
                if (!status.isOK())
                    return status;
            }
        }

        return Status::OK();
    }
开发者ID:3rf,项目名称:mongo,代码行数:46,代码来源:path_support.cpp

示例6: planSubqueries

    Status SubplanStage::planSubqueries() {
        // Adds the amount of time taken by planSubqueries() to executionTimeMillis. There's lots of
        // work that happens here, so this is needed for the time accounting to make sense.
        ScopedTimer timer(&_commonStats.executionTimeMillis);

        MatchExpression* orExpr = _query->root();

        for (size_t i = 0; i < _plannerParams.indices.size(); ++i) {
            const IndexEntry& ie = _plannerParams.indices[i];
            _indexMap[ie.keyPattern] = i;
            QLOG() << "Subplanner: index " << i << " is " << ie.toString() << endl;
        }

        const WhereCallbackReal whereCallback(_txn, _collection->ns().db());

        for (size_t i = 0; i < orExpr->numChildren(); ++i) {
            // We need a place to shove the results from planning this branch.
            _branchResults.push_back(new BranchPlanningResult());
            BranchPlanningResult* branchResult = _branchResults.back();

            MatchExpression* orChild = orExpr->getChild(i);

            // Turn the i-th child into its own query.
            {
                CanonicalQuery* orChildCQ;
                Status childCQStatus = CanonicalQuery::canonicalize(*_query,
                                                                    orChild,
                                                                    &orChildCQ,
                                                                    whereCallback);
                if (!childCQStatus.isOK()) {
                    mongoutils::str::stream ss;
                    ss << "Can't canonicalize subchild " << orChild->toString()
                       << " " << childCQStatus.reason();
                    return Status(ErrorCodes::BadValue, ss);
                }

                branchResult->canonicalQuery.reset(orChildCQ);
            }

            // Plan the i-th child. We might be able to find a plan for the i-th child in the plan
            // cache. If there's no cached plan, then we generate and rank plans using the MPS.
            CachedSolution* rawCS;
            if (PlanCache::shouldCacheQuery(*branchResult->canonicalQuery.get()) &&
                _collection->infoCache()->getPlanCache()->get(*branchResult->canonicalQuery.get(),
                                                              &rawCS).isOK()) {
                // We have a CachedSolution. Store it for later.
                QLOG() << "Subplanner: cached plan found for child " << i << " of "
                       << orExpr->numChildren();

                branchResult->cachedSolution.reset(rawCS);
            }
            else {
                // No CachedSolution found. We'll have to plan from scratch.
                QLOG() << "Subplanner: planning child " << i << " of " << orExpr->numChildren();

                // We don't set NO_TABLE_SCAN because peeking at the cache data will keep us from
                // considering any plan that's a collscan.
                Status status = QueryPlanner::plan(*branchResult->canonicalQuery.get(),
                                                   _plannerParams,
                                                   &branchResult->solutions.mutableVector());

                if (!status.isOK()) {
                    mongoutils::str::stream ss;
                    ss << "Can't plan for subchild "
                       << branchResult->canonicalQuery->toString()
                       << " " << status.reason();
                    return Status(ErrorCodes::BadValue, ss);
                }
                QLOG() << "Subplanner: got " << branchResult->solutions.size() << " solutions";

                if (0 == branchResult->solutions.size()) {
                    // If one child doesn't have an indexed solution, bail out.
                    mongoutils::str::stream ss;
                    ss << "No solutions for subchild " << branchResult->canonicalQuery->toString();
                    return Status(ErrorCodes::BadValue, ss);
                }
            }
        }

        return Status::OK();
    }
开发者ID:maxkeller,项目名称:mongo,代码行数:81,代码来源:subplan.cpp

示例7: normalizeTree

// static
MatchExpression* CanonicalQuery::normalizeTree(MatchExpression* root) {
    if (MatchExpression::AND == root->matchType() || MatchExpression::OR == root->matchType()) {
        // We could have AND of AND of AND.  Make sure we clean up our children before merging them.
        for (size_t i = 0; i < root->getChildVector()->size(); ++i) {
            (*root->getChildVector())[i] = normalizeTree(root->getChild(i));
        }

        // If any of our children are of the same logical operator that we are, we remove the
        // child's children and append them to ourselves after we examine all children.
        std::vector<MatchExpression*> absorbedChildren;

        for (size_t i = 0; i < root->numChildren();) {
            MatchExpression* child = root->getChild(i);
            if (child->matchType() == root->matchType()) {
                // AND of an AND or OR of an OR.  Absorb child's children into ourself.
                for (size_t j = 0; j < child->numChildren(); ++j) {
                    absorbedChildren.push_back(child->getChild(j));
                }
                // TODO(opt): this is possibly n^2-ish
                root->getChildVector()->erase(root->getChildVector()->begin() + i);
                child->getChildVector()->clear();
                // Note that this only works because we cleared the child's children
                delete child;
                // Don't increment 'i' as the current child 'i' used to be child 'i+1'
            } else {
                ++i;
            }
        }

        root->getChildVector()->insert(
            root->getChildVector()->end(), absorbedChildren.begin(), absorbedChildren.end());

        // AND of 1 thing is the thing, OR of 1 thing is the thing.
        if (1 == root->numChildren()) {
            MatchExpression* ret = root->getChild(0);
            root->getChildVector()->clear();
            delete root;
            return ret;
        }
    } else if (MatchExpression::NOR == root->matchType()) {
        // First clean up children.
        for (size_t i = 0; i < root->getChildVector()->size(); ++i) {
            (*root->getChildVector())[i] = normalizeTree(root->getChild(i));
        }

        // NOR of one thing is NOT of the thing.
        if (1 == root->numChildren()) {
            // Detach the child and assume ownership.
            std::unique_ptr<MatchExpression> child(root->getChild(0));
            root->getChildVector()->clear();

            // Delete the root when this goes out of scope.
            std::unique_ptr<NorMatchExpression> ownedRoot(static_cast<NorMatchExpression*>(root));

            // Make a NOT to be the new root and transfer ownership of the child to it.
            auto newRoot = stdx::make_unique<NotMatchExpression>();
            newRoot->init(child.release()).transitional_ignore();

            return newRoot.release();
        }
    } else if (MatchExpression::NOT == root->matchType()) {
        // Normalize the rest of the tree hanging off this NOT node.
        NotMatchExpression* nme = static_cast<NotMatchExpression*>(root);
        MatchExpression* child = nme->releaseChild();
        // normalizeTree(...) takes ownership of 'child', and then
        // transfers ownership of its return value to 'nme'.
        nme->resetChild(normalizeTree(child));
    } else if (MatchExpression::ELEM_MATCH_OBJECT == root->matchType()) {
        // Normalize the rest of the tree hanging off this ELEM_MATCH_OBJECT node.
        ElemMatchObjectMatchExpression* emome = static_cast<ElemMatchObjectMatchExpression*>(root);
        auto child = emome->releaseChild();
        // normalizeTree(...) takes ownership of 'child', and then
        // transfers ownership of its return value to 'emome'.
        emome->resetChild(std::unique_ptr<MatchExpression>(normalizeTree(child.release())));
    } else if (MatchExpression::ELEM_MATCH_VALUE == root->matchType()) {
        // Just normalize our children.
        for (size_t i = 0; i < root->getChildVector()->size(); ++i) {
            (*root->getChildVector())[i] = normalizeTree(root->getChild(i));
        }
    } else if (MatchExpression::MATCH_IN == root->matchType()) {
        std::unique_ptr<InMatchExpression> in(static_cast<InMatchExpression*>(root));

        // IN of 1 regex is the regex.
        if (in->getRegexes().size() == 1 && in->getEqualities().empty()) {
            RegexMatchExpression* childRe = in->getRegexes().begin()->get();
            invariant(!childRe->getTag());

            // Create a new RegexMatchExpression, because 'childRe' does not have a path.
            auto re = stdx::make_unique<RegexMatchExpression>();
            re->init(in->path(), childRe->getString(), childRe->getFlags()).transitional_ignore();
            if (in->getTag()) {
                re->setTag(in->getTag()->clone());
            }
            return normalizeTree(re.release());
        }

        // IN of 1 equality is the equality.
        if (in->getEqualities().size() == 1 && in->getRegexes().empty()) {
            auto eq = stdx::make_unique<EqualityMatchExpression>();
//.........这里部分代码省略.........
开发者ID:mpobrien,项目名称:mongo,代码行数:101,代码来源:canonical_query.cpp

示例8: plan


//.........这里部分代码省略.........
            unique_ptr<PlanCacheIndexTree> autoData(cacheData);

            // This can fail if enumeration makes a mistake.
            QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess(
                query, rawTree, false, relevantIndices, params);

            if (NULL == solnRoot) {
                continue;
            }

            QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot);
            if (NULL != soln) {
                LOG(5) << "Planner: adding solution:" << endl
                       << soln->toString();
                if (indexTreeStatus.isOK()) {
                    SolutionCacheData* scd = new SolutionCacheData();
                    scd->tree.reset(autoData.release());
                    soln->cacheData.reset(scd);
                }
                out->push_back(soln);
            }
        }
    }

    // Don't leave tags on query tree.
    query.root()->resetTag();

    LOG(5) << "Planner: outputted " << out->size() << " indexed solutions.\n";

    // Produce legible error message for failed OR planning with a TEXT child.
    // TODO: support collection scan for non-TEXT children of OR.
    if (out->size() == 0 && textNode != NULL && MatchExpression::OR == query.root()->matchType()) {
        MatchExpression* root = query.root();
        for (size_t i = 0; i < root->numChildren(); ++i) {
            if (textNode == root->getChild(i)) {
                return Status(ErrorCodes::BadValue,
                              "Failed to produce a solution for TEXT under OR - "
                              "other non-TEXT clauses under OR have to be indexed as well.");
            }
        }
    }

    // An index was hinted.  If there are any solutions, they use the hinted index.  If not, we
    // scan the entire index to provide results and output that as our plan.  This is the
    // desired behavior when an index is hinted that is not relevant to the query.
    if (!hintIndex.isEmpty()) {
        if (0 == out->size()) {
            QuerySolution* soln = buildWholeIXSoln(params.indices[hintIndexNumber], query, params);
            verify(NULL != soln);
            LOG(5) << "Planner: outputting soln that uses hinted index as scan." << endl;
            out->push_back(soln);
        }
        return Status::OK();
    }

    // If a sort order is requested, there may be an index that provides it, even if that
    // index is not over any predicates in the query.
    //
    if (!query.getParsed().getSort().isEmpty() &&
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) &&
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) {
        // See if we have a sort provided from an index already.
        // This is implied by the presence of a non-blocking solution.
        bool usingIndexToSort = false;
        for (size_t i = 0; i < out->size(); ++i) {
            QuerySolution* soln = (*out)[i];
开发者ID:m4rcsch,项目名称:mongo,代码行数:67,代码来源:query_planner.cpp

示例9: plan


//.........这里部分代码省略.........
        MatchExpression* gnNode = NULL;
        if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) {
            // No index for GEO_NEAR?  No query.
            RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag());
            if (0 == tag->first.size() && 0 == tag->notFirst.size()) {
                return;
            }

            GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(gnNode);

            vector<size_t> newFirst;

            // 2d + GEO_NEAR is annoying.  Because 2d's GEO_NEAR isn't streaming we have to embed
            // the full query tree inside it as a matcher.
            for (size_t i = 0; i < tag->first.size(); ++i) {
                // GEO_NEAR has a non-2d index it can use.  We can deal w/that in normal planning.
                if (!is2DIndex(relevantIndices[tag->first[i]].keyPattern)) {
                    newFirst.push_back(i);
                    continue;
                }

                // If we're here, GEO_NEAR has a 2d index.  We create a 2dgeonear plan with the
                // entire tree as a filter, if possible.

                GeoNear2DNode* solnRoot = new GeoNear2DNode();
                solnRoot->nq = gnme->getData();

                if (MatchExpression::GEO_NEAR != query.root()->matchType()) {
                    // root is an AND, clone and delete the GEO_NEAR child.
                    MatchExpression* filterTree = query.root()->shallowClone();
                    verify(MatchExpression::AND == filterTree->matchType());

                    bool foundChild = false;
                    for (size_t i = 0; i < filterTree->numChildren(); ++i) {
                        if (MatchExpression::GEO_NEAR == filterTree->getChild(i)->matchType()) {
                            foundChild = true;
                            filterTree->getChildVector()->erase(filterTree->getChildVector()->begin() + i);
                            break;
                        }
                    }
                    verify(foundChild);
                    solnRoot->filter.reset(filterTree);
                }

                solnRoot->numWanted = query.getParsed().getNumToReturn();
                if (0 == solnRoot->numWanted) {
                    solnRoot->numWanted = 100;
                }
                solnRoot->indexKeyPattern = relevantIndices[tag->first[i]].keyPattern;

                // Remove the 2d index.  2d can only be the first field, and we know there is
                // only one GEO_NEAR, so we don't care if anyone else was assigned it; it'll
                // only be first for gnNode.
                tag->first.erase(tag->first.begin() + i);

                QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot);

                if (NULL != soln) {
                    out->push_back(soln);
                }
            }

            // Continue planning w/non-2d indices tagged for this pred.
            tag->first.swap(newFirst);

            if (0 == tag->first.size() && 0 == tag->notFirst.size()) {
开发者ID:balyanrobin,项目名称:mongo,代码行数:67,代码来源:query_planner.cpp

示例10: populateDocumentWithQueryFields

    Status UpdateDriver::populateDocumentWithQueryFields(const CanonicalQuery* query,
                                                         mutablebson::Document& doc) const {

        MatchExpression* root = query->root();

        MatchExpression::MatchType rootType = root->matchType();

        // These copies are needed until we apply the modifiers at the end.
        std::vector<BSONObj> copies;

        // We only care about equality and "and"ed equality fields, everything else is ignored
        if (rootType != MatchExpression::EQ && rootType != MatchExpression::AND)
            return Status::OK();

        if (isDocReplacement()) {
            BSONElement idElem = query->getQueryObj().getField("_id");

            // Replacement mods need the _id field copied explicitly.
            if (idElem.ok()) {
                mb::Element elem = doc.makeElement(idElem);
                return doc.root().pushFront(elem);
            }

            return Status::OK();
        }

        // Create a new UpdateDriver to create the base doc from the query
        Options opts;
        opts.logOp = false;
        opts.multi = false;
        opts.upsert = true;
        opts.modOptions = modOptions();

        UpdateDriver insertDriver(opts);
        insertDriver.setContext(ModifierInterface::ExecInfo::INSERT_CONTEXT);

        // If we are a single equality match query
        if (root->matchType() == MatchExpression::EQ) {
            EqualityMatchExpression* eqMatch =
                    static_cast<EqualityMatchExpression*>(root);

            const BSONElement matchData = eqMatch->getData();
            BSONElement childElem = matchData;

            // Make copy to new path if not the same field name (for cases like $all)
            if (!root->path().empty() && matchData.fieldNameStringData() != root->path()) {
                BSONObjBuilder copyBuilder;
                copyBuilder.appendAs(eqMatch->getData(), root->path());
                const BSONObj copy = copyBuilder.obj();
                copies.push_back(copy);
                childElem = copy[root->path()];
            }

            // Add this element as a $set modifier
            Status s = insertDriver.addAndParse(modifiertable::MOD_SET,
                                                childElem);
            if (!s.isOK())
                return s;

        }
        else {

            // parse query $set mods, including only equality stuff
            for (size_t i = 0; i < root->numChildren(); ++i) {
                MatchExpression* child = root->getChild(i);
                if (child->matchType() == MatchExpression::EQ) {
                    EqualityMatchExpression* eqMatch =
                            static_cast<EqualityMatchExpression*>(child);

                    const BSONElement matchData = eqMatch->getData();
                    BSONElement childElem = matchData;

                    // Make copy to new path if not the same field name (for cases like $all)
                    if (!child->path().empty() &&
                            matchData.fieldNameStringData() != child->path()) {
                        BSONObjBuilder copyBuilder;
                        copyBuilder.appendAs(eqMatch->getData(), child->path());
                        const BSONObj copy = copyBuilder.obj();
                        copies.push_back(copy);
                        childElem = copy[child->path()];
                    }

                    // Add this element as a $set modifier
                    Status s = insertDriver.addAndParse(modifiertable::MOD_SET,
                                                        childElem);
                    if (!s.isOK())
                        return s;
                }
            }
        }

        // update the document with base field
        Status s = insertDriver.update(StringData(), &doc);
        copies.clear();
        if (!s.isOK()) {
            return Status(ErrorCodes::UnsupportedFormat,
                          str::stream() << "Cannot create base during"
                                           " insert of update. Caused by :"
                                        << s.toString());
        }
//.........这里部分代码省略.........
开发者ID:DanilSerd,项目名称:mongo,代码行数:101,代码来源:update_driver.cpp

示例11: plan


//.........这里部分代码省略.........
                QLOG() << "unable to find index for $geoNear query" << endl;
                return Status(ErrorCodes::BadValue, "unable to find index for $geoNear query");
            }

            GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(gnNode);

            vector<size_t> newFirst;

            // 2d + GEO_NEAR is annoying.  Because 2d's GEO_NEAR isn't streaming we have to embed
            // the full query tree inside it as a matcher.
            for (size_t i = 0; i < tag->first.size(); ++i) {
                // GEO_NEAR has a non-2d index it can use.  We can deal w/that in normal planning.
                if (!is2DIndex(relevantIndices[tag->first[i]].keyPattern)) {
                    newFirst.push_back(i);
                    continue;
                }

                // If we're here, GEO_NEAR has a 2d index.  We create a 2dgeonear plan with the
                // entire tree as a filter, if possible.

                GeoNear2DNode* solnRoot = new GeoNear2DNode();
                solnRoot->nq = gnme->getData();
                if (NULL != query.getProj()) {
                    solnRoot->addPointMeta = query.getProj()->wantGeoNearPoint();
                    solnRoot->addDistMeta = query.getProj()->wantGeoNearDistance();
                }

                if (MatchExpression::GEO_NEAR != query.root()->matchType()) {
                    // root is an AND, clone and delete the GEO_NEAR child.
                    MatchExpression* filterTree = query.root()->shallowClone();
                    verify(MatchExpression::AND == filterTree->matchType());

                    bool foundChild = false;
                    for (size_t i = 0; i < filterTree->numChildren(); ++i) {
                        if (MatchExpression::GEO_NEAR == filterTree->getChild(i)->matchType()) {
                            foundChild = true;
                            filterTree->getChildVector()->erase(filterTree->getChildVector()->begin() + i);
                            break;
                        }
                    }
                    verify(foundChild);
                    solnRoot->filter.reset(filterTree);
                }

                solnRoot->numWanted = query.getParsed().getNumToReturn();
                if (0 == solnRoot->numWanted) {
                    solnRoot->numWanted = 100;
                }
                solnRoot->indexKeyPattern = relevantIndices[tag->first[i]].keyPattern;

                // Remove the 2d index.  2d can only be the first field, and we know there is
                // only one GEO_NEAR, so we don't care if anyone else was assigned it; it'll
                // only be first for gnNode.
                tag->first.erase(tag->first.begin() + i);

                QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot);

                if (NULL != soln) {
                    out->push_back(soln);
                }
            }

            // Continue planning w/non-2d indices tagged for this pred.
            tag->first.swap(newFirst);

            if (0 == tag->first.size() && 0 == tag->notFirst.size()) {
开发者ID:basukaladagi,项目名称:mongo,代码行数:67,代码来源:query_planner.cpp


注:本文中的MatchExpression::numChildren方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。