当前位置: 首页>>代码示例>>C++>>正文


C++ Mat1b::clone方法代码示例

本文整理汇总了C++中Mat1b::clone方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat1b::clone方法的具体用法?C++ Mat1b::clone怎么用?C++ Mat1b::clone使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Mat1b的用法示例。


在下文中一共展示了Mat1b::clone方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: nietoLaneMarkingsDetector

void Nieto::nietoLaneMarkingsDetector(Mat1b &srcGRAY, Mat1b &dstGRAY, int tauInicio, int tauFim) {

	Mat1b tempDst = Mat1b(srcGRAY.size(), 0);

	int aux = 0;
	double alturaInicioVariacao = (double)srcGRAY.rows / 2;
	double tauTaxaVariacao = double(tauFim - tauInicio) / alturaInicioVariacao;
	int tau = tauInicio;
	for (int j = 0; j < srcGRAY.rows; ++j) {
		unsigned char *ptRowSrc = srcGRAY.ptr<uchar>(j);
		unsigned char *ptRowDst = tempDst.ptr<uchar>(j);
		if (j > alturaInicioVariacao) tau = int(tauInicio + tauTaxaVariacao * (j - alturaInicioVariacao));
		for (int i = tau; i < srcGRAY.cols - tau; ++i) {

			unsigned char aux2 = ptRowSrc[i];

			if (ptRowSrc[i] != 0) {
				aux = 2 * ptRowSrc[i];
				aux += -ptRowSrc[i - tau];
				aux += -ptRowSrc[i + tau];
				aux += -abs((int)(ptRowSrc[i - tau] - ptRowSrc[i + tau]));

				aux = (aux < 0) ? 0 : aux;
				aux = (aux > 255) ? 255 : aux;

				ptRowDst[i] = (unsigned char)aux;
			}
		}
	}
	dstGRAY = tempDst.clone();
}
开发者ID:LCAD-UFES,项目名称:carmen_lcad,代码行数:31,代码来源:nieto.cpp

示例2: displayBoolean

void displayBoolean(Mat1b& mat) {
  if (!img_widget) {
      img_widget = new ImageWidget(0);
      img_widget->show();
  }
  Mat1b dup = mat.clone();
  dup *= 255;

  img_widget->setImage(dup);
}
开发者ID:mgsloan,项目名称:kiimote,代码行数:10,代码来源:tracker.cpp

示例3: imadjust

void imadjust(const Mat1b& src, Mat1b& dst, int tol = 1, Vec2i in = Vec2i(0, 255), Vec2i out = Vec2i(0, 255))
{
    // src : input CV_8UC1 image
    // dst : output CV_8UC1 imge
    // tol : tolerance, from 0 to 100.
    // in  : src image bounds
    // out : dst image buonds

    dst = src.clone();

    tol = max(0, min(100, tol));

    if (tol > 0)
    {
        // Compute in and out limits

        // Histogram
        vector<int> hist(256, 0);
        for (int r = 0; r < src.rows; ++r) {
            for (int c = 0; c < src.cols; ++c) {
                hist[src(r,c)]++;
            }
        }

        // Cumulative histogram
        vector<int> cum = hist;
        for (int i = 1; i < hist.size(); ++i) {
            cum[i] = cum[i - 1] + hist[i];
        }

        // Compute bounds
        int total = src.rows * src.cols;
        int low_bound = total * tol / 100;
        int upp_bound = total * (100-tol) / 100;
        in[0] = distance(cum.begin(), lower_bound(cum.begin(), cum.end(), low_bound));
        in[1] = distance(cum.begin(), lower_bound(cum.begin(), cum.end(), upp_bound));

    }

    // Stretching
    float scale = float(out[1] - out[0]) / float(in[1] - in[0]);
    for (int r = 0; r < dst.rows; ++r)
    {
        for (int c = 0; c < dst.cols; ++c)
        {
            int vs = max(src(r, c) - in[0], 0);
            int vd = min(int(vs * scale + 0.5f) + out[0], out[1]);
            dst(r, c) = saturate_cast<uchar>(vd);
        }
    }
}
开发者ID:Apicio,项目名称:yV9R8ge87FnJ,代码行数:51,代码来源:detection.cpp

示例4: skeleton

Mat1b Helper::skeleton(const Mat1b &binaryImage, const int size) {

	Mat1b img = binaryImage.clone();
	Mat skel(img.size(), CV_8UC1, Scalar(0));
	Mat temp;
	Mat eroded;

	Mat element = getStructuringElement(MORPH_CROSS, cv::Size(size, size));

	bool done;
	do {
		erode(img, eroded, element);
		dilate(eroded, temp, element); // temp = open(img)
		subtract(img, temp, temp);
		bitwise_or(skel, temp, skel);
		eroded.copyTo(img);

		done = (countNonZero(img) == 0);
	} while (!done);

	return skel;
}
开发者ID:LCAD-UFES,项目名称:carmen_lcad,代码行数:22,代码来源:Helper.cpp

示例5: max

void xyVision::GetTarget::imadjust(const Mat1b& src, Mat1b& dst, int tol, Vec2i in, Vec2i out)
{
	dst = src.clone();
	tol = max(0, min(100, tol));
	if (tol > 0)
	{
		// Compute in and out limits
		// Histogram
		vector<int> hist(256, 0);
		for (int r = 0; r < src.rows; ++r) {
			for (int c = 0; c < src.cols; ++c) {
				hist[src(r,c)]++;
			}
		}
		// Cumulative histogram
		vector<int> cum = hist;
		for (int i = 1; i < (int)hist.size(); ++i) {
			cum[i] = cum[i - 1] + hist[i];
		}
		// Compute bounds
		int total = src.rows * src.cols;
		int low_bound = total * tol / 100;
		int upp_bound = total * (100-tol) / 100;
		in[0] = distance(cum.begin(), lower_bound(cum.begin(), cum.end(), low_bound));
		in[1] = distance(cum.begin(), lower_bound(cum.begin(), cum.end(), upp_bound));
	}
	// Stretching
	float scale = float(out[1] - out[0]) / float(in[1] - in[0]);
	for (int r = 0; r < dst.rows; ++r)
	{
		for (int c = 0; c < dst.cols; ++c)
		{
			int vs = max(src(r, c) - in[0], 0);
			int vd = min(int(vs * scale + 0.5f) + out[0], out[1]);
			dst(r, c) = saturate_cast<uchar>(vd);
		}
	}
}
开发者ID:zhanglei8411,项目名称:XYPatrol,代码行数:38,代码来源:getTargetLoc.cpp

示例6: I_armaSamples

void Nieto::ExpectationMaximizationArmadillo2Features(const Mat1b &imageI, const Mat1b &imageL, 
	map<string, double> &i_means0, map<string, double> &i_covs0, map<string, double> &i_weights0, 
	map<string, double> &l_means0, map<string, double> &l_covs0, map<string, double> &l_weights0, int maxIters) {

	double tempoInicio = static_cast<double>(getTickCount());
	const int nClusters = 4; // 4 classes => {pavement, markings, objects, unknown}
	bool aplicaResize = true;
	
	// samples feature I
	Mat1b I_imageClone = imageI.clone();
	Mat1b I_trainImageClone = imageI.clone();
	if (aplicaResize) resize(I_imageClone, I_trainImageClone, Size(160, 35), 0, 0, INTER_NEAREST);
	Mat1d I_samples = I_trainImageClone.reshape(1, I_trainImageClone.rows * I_trainImageClone.cols);
	arma::mat I_armaSamples(reinterpret_cast<double*>(I_samples.data), I_samples.rows, I_samples.cols);
	
	// samples feature L
	Mat1b L_imageClone = imageL.clone();
	Mat1b L_trainImageClone = imageL.clone();
	if (aplicaResize) resize(L_imageClone, L_trainImageClone, Size(160, 35), 0, 0, INTER_NEAREST);
	Mat1d L_samples = L_trainImageClone.reshape(1, L_trainImageClone.rows * L_trainImageClone.cols);
	arma::mat L_armaSamples(reinterpret_cast<double*>(L_samples.data), L_samples.rows, L_samples.cols);
	
	// junta as amostras (uma em cada linha)
	arma::mat armaSamples = arma::join_rows(I_armaSamples, L_armaSamples);
	// cout << "size armaSamples: " << arma::size(armaSamples.t()) << endl;

	// formata o _means0
	arma::mat means0(2, nClusters);
	means0.at(0, 0) = i_means0["pavement"];
	means0.at(0, 1) = i_means0["markings"];
	means0.at(0, 2) = i_means0["objects"];
	means0.at(0, 3) = 255.0 / 2.0;
	means0.at(1, 0) = l_means0["pavement"];
	means0.at(1, 1) = l_means0["markings"];
	means0.at(1, 2) = l_means0["objects"];
	means0.at(1, 3) = 255.0 / 2.0;
	// cout << "size means0: " << arma::size(means0) << endl;

	// formata o _covs0
	arma::mat covs0(2, nClusters);
	covs0.at(0, 0) = i_covs0["pavement"];
	covs0.at(0, 1) = i_covs0["markings"];
	covs0.at(0, 2) = i_covs0["objects"];
	covs0.at(0, 3) = ((255.0 / 2.0) / sqrt(3)) * ((255.0 / 2.0) / sqrt(3));
	covs0.at(1, 0) = l_covs0["pavement"];
	covs0.at(1, 1) = l_covs0["markings"];
	covs0.at(1, 2) = l_covs0["objects"];
	covs0.at(1, 3) = ((255.0 / 2.0) / sqrt(3)) * ((255.0 / 2.0) / sqrt(3));
	// cout << "size covs0: " << arma::size(covs0) << endl;

	// formata o _weights0
	arma::mat weights0(1, nClusters);/*
	double total_i = i_weights0["pavement"] + i_weights0["markings"] + i_weights0["objects"] + i_weights0["unknown"];
	double total_l = l_weights0["pavement"] + l_weights0["markings"] + l_weights0["objects"] + l_weights0["unknown"];
	double total_weights = total_i + total_l;
	weights0.at(0, 0) = (i_weights0["pavement"] + l_weights0["pavement"]) / total_weights;
	weights0.at(0, 1) = (i_weights0["markings"] + l_weights0["markings"]) / total_weights;
	weights0.at(0, 2) = (i_weights0["objects"] + l_weights0["objects"]) / total_weights;
	weights0.at(0, 3) = (i_weights0["unknown"] + l_weights0["unknown"]) / total_weights;
	*/

	double total_i = i_weights0["pavement"] + i_weights0["objects"] + i_weights0["unknown"] + l_weights0["markings"];
	weights0.at(0, 0) = i_weights0["pavement"] / total_i;
	weights0.at(0, 1) = l_weights0["markings"] / total_i;
	weights0.at(0, 2) = i_weights0["objects"] / total_i;
	weights0.at(0, 3) = i_weights0["unknown"] / total_i;
	// cout << "size weights0: " << arma::size(weights0) << endl;
	weights0.at(0, 0) = trunc(weights0.at(0, 0) * 1000) / 1000;
	weights0.at(0, 1) = trunc(weights0.at(0, 1) * 1000) / 1000;
	weights0.at(0, 2) = trunc(weights0.at(0, 2) * 1000) / 1000;
	weights0.at(0, 3) = trunc(weights0.at(0, 3) * 1000) / 1000;

	double diff = 1 - (weights0.at(0, 0) + weights0.at(0, 1) + weights0.at(0, 2) + weights0.at(0, 3));
	weights0.at(0, 3) += diff;

	// if (!(size(means0) != size(covs0))) cout << "1 - ok!" << endl;
	// if (!(weights0.n_cols != means0.n_cols)) cout << "2 - ok!" << endl;
	// if (!(weights0.n_rows != 1)) cout << "3 - ok!" << endl;

	arma::gmm_diag em;
	em.set_params(means0, covs0, weights0);
	em.means.print("means a: ");
	em.dcovs.print("dcovs a: ");
	em.hefts.print("hefts a: ");
	em.learn(armaSamples.t(), nClusters, arma::eucl_dist, arma::keep_existing, 0, 1000, 1e-10, false);
	em.means.print("means b: ");
	em.dcovs.print("dcovs b: ");
	em.hefts.print("hefts b: ");
	
	// calcula o tempo de execu��o
	double tempoFim = static_cast<double>(getTickCount());
	double tempoExecutando = ((tempoFim - tempoInicio) / getTickFrequency()) * 1000;

	// exibe as sa�das definidas (texto e/ou imagem)
	if (verbose) cout << "- em armadillo (2 features): " << tempoExecutando << " ms" << endl;
	if (display) {
		// predict
		Mat1b predictedImage = Mat1b(imageI.size(), uchar(0));
		for (int j = 0; j < predictedImage.rows; ++j) {
			unsigned char *ptRowI = I_imageClone.ptr<uchar>(j);
//.........这里部分代码省略.........
开发者ID:LCAD-UFES,项目名称:carmen_lcad,代码行数:101,代码来源:nieto.cpp

示例7: ExpectationMaximizationArmadillo

void Nieto::ExpectationMaximizationArmadillo(const Mat1b &inGrayFrameRoi, int maxIters, map<string, double> &_means0, map<string, double> &_covs0, map<string, double> &_weights0) {

	double tempoInicio = static_cast<double>(getTickCount());
	const int nClusters = 4; // 4 classes => {pavement, markings, objects, unknown}

	Mat1b grayFrameRoiClone = inGrayFrameRoi.clone();
	Mat1b trainGrayFrameRoiClone = inGrayFrameRoi.clone();
	resize(grayFrameRoiClone, trainGrayFrameRoiClone, Size(160, 35), 0, 0, INTER_NEAREST);
	Mat1d samples = trainGrayFrameRoiClone.reshape(1, trainGrayFrameRoiClone.rows * trainGrayFrameRoiClone.cols);
	arma::mat armaSamples(reinterpret_cast<double*>(samples.data), samples.rows, samples.cols);

	// cout << "size armaSamples: " << arma::size(armaSamples) << endl;

	// formata o _means0
	arma::mat means0(1, nClusters);
	means0.at(0, 0) = _means0["pavement"];
	means0.at(0, 1) = _means0["markings"];
	means0.at(0, 2) = _means0["objects"];
	means0.at(0, 3) = 255.0 / 2.0;

	// cout << "size means0: " << arma::size(means0) << endl;

	// formata o _covs0
	arma::mat covs0(1, nClusters);
	covs0.at(0, 0) = _covs0["pavement"];
	covs0.at(0, 1) = _covs0["markings"];
	covs0.at(0, 2) = _covs0["objects"];
	covs0.at(0, 3) = ((255.0 / 2.0) / sqrt(3)) * ((255.0 / 2.0) / sqrt(3));

	// cout << "size covs0: " << arma::size(covs0) << endl;

	// formata o _weights0
	arma::mat weights0(1, nClusters);
	weights0.at(0, 0) = _weights0["pavement"];
	weights0.at(0, 1) = _weights0["markings"];
	weights0.at(0, 2) = _weights0["objects"];
	weights0.at(0, 3) = _weights0["unknown"];

	// cout << "size weights0: " << arma::size(weights0) << endl;

	// if (!(size(means0) != size(covs0))) cout << "1 - ok!" << endl;
	// if (!(weights0.n_cols != means0.n_cols)) cout << "2 - ok!" << endl;
	// if (!(weights0.n_rows != 1)) cout << "3 - ok!" << endl;

	arma::gmm_diag em;
	em.set_params(means0, covs0, weights0);
	em.learn(armaSamples.t(), nClusters, arma::eucl_dist, arma::keep_existing, 0, maxIters, 1e-10, false);

	// calcula o tempo de execu��o
	double tempoFim = static_cast<double>(getTickCount());
	double tempoExecutando = ((tempoFim - tempoInicio) / getTickFrequency()) * 1000;

	// exibe as sa�das definidas (texto e/ou imagem)
	if (verbose) cout << "- em armadillo (1 feature): " << tempoExecutando << " ms" << endl;
	if (display) {
		// predict
		Mat1b predictedImage = Mat1b(grayFrameRoiClone.size(), uchar(0));
		for (int j = 0; j < predictedImage.rows; ++j) {
			unsigned char *ptRowSrc = grayFrameRoiClone.ptr<uchar>(j);
			unsigned char *ptRowDst = predictedImage.ptr<uchar>(j);
			for (int i = 0; i < predictedImage.cols; ++i) {
				arma::vec v;
				v << ptRowSrc[i];
				int emPredicted = em.assign(v, arma::eucl_dist);
				switch (emPredicted) {
				case 0: ptRowDst[i] = 160; break;
				case 1: ptRowDst[i] = 255; break;
				case 2: ptRowDst[i] = 80; break;
				case 3: ptRowDst[i] = 0; break;
				}
			}
		}
		imshow("EM Armadillo - 1 Feature", predictedImage);
	}
}
开发者ID:LCAD-UFES,项目名称:carmen_lcad,代码行数:75,代码来源:nieto.cpp

示例8: double

void Nieto::ExpectationMaximizationOpenCV2Features(const Mat1b &imageI, const Mat1b &imageL,
	map<string, double> &i_means0, map<string, double> &i_covs0, map<string, double> &i_weights0,
	map<string, double> &l_means0, map<string, double> &l_covs0, map<string, double> &l_weights0, int maxIters) {

	double tempoInicio = static_cast<double>(getTickCount());
	const int nFeatures = 2; // 2 features => {I, L}
	const int nClusters = 4; // 4 classes => {pavement, markings, objects, unknown}
	const bool aplicaResize = true;

	// samples feature I
	Mat1b I_imageClone = imageI.clone();
	Mat1b I_trainImageClone = imageI.clone();
	if (aplicaResize) resize(I_imageClone, I_trainImageClone, Size(160, 35), 0, 0, INTER_NEAREST);
	Mat1d I_samples = I_trainImageClone.reshape(1, I_trainImageClone.rows * I_trainImageClone.cols);

	// samples feature L
	Mat1b L_imageClone = imageL.clone();
	Mat1b L_trainImageClone = imageL.clone();
	if (aplicaResize) resize(L_imageClone, L_trainImageClone, Size(160, 35), 0, 0, INTER_NEAREST);
	Mat1d L_samples = L_trainImageClone.reshape(1, L_trainImageClone.rows * L_trainImageClone.cols);

	// junta as amostras (uma em cada linha)
	Mat1d samplesArray[] = { I_samples, L_samples };
	Mat1d samples;
	cv::hconcat(samplesArray, 2, samples);
	
	// formata o _means0
	Mat1d means0 = Mat1d(nClusters, nFeatures, CV_64FC1);
	means0.at<double>(0, 0) = i_means0["pavement"];
	means0.at<double>(1, 0) = i_means0["markings"];
	means0.at<double>(2, 0) = i_means0["objects"];
	means0.at<double>(3, 0) = 255.0 / 2.0;
	means0.at<double>(0, 1) = l_means0["pavement"];
	means0.at<double>(1, 1) = l_means0["markings"];
	means0.at<double>(2, 1) = l_means0["objects"];
	means0.at<double>(3, 1) = 255.0 / 2.0;

	// formata o _covs0
	Mat1d covs0_pavement = Mat1d(Size(nFeatures, nFeatures), double(0));
	covs0_pavement.at<double>(0, 0) = i_covs0["pavement"];
	covs0_pavement.at<double>(1, 1) = l_covs0["pavement"];
	Mat1d covs0_markings = Mat1d(Size(nFeatures, nFeatures), double(0));;
	covs0_markings.at<double>(0, 0) = i_covs0["markings"];
	covs0_markings.at<double>(1, 1) = l_covs0["markings"];
	Mat1d covs0_objects = Mat1d(Size(nFeatures, nFeatures), double(0));;
	covs0_objects.at<double>(0, 0) = i_covs0["objects"];
	covs0_objects.at<double>(1, 1) = l_covs0["objects"];
	Mat1d covs0_unknown = Mat1d(Size(nFeatures, nFeatures), double(0));;
	covs0_unknown.at<double>(0, 0) = ((255.0 / 2.0) / sqrt(3)) * ((255.0 / 2.0) / sqrt(3));
	covs0_unknown.at<double>(1, 1) = ((255.0 / 2.0) / sqrt(3)) * ((255.0 / 2.0) / sqrt(3));
	vector<Mat> covs0 = {
		covs0_pavement,
		covs0_markings,
		covs0_objects,
		covs0_unknown
	};

	// formata o _weights0
	Mat1d weights0 = Mat1d(nClusters, 1, CV_64FC1);
	double total_i = i_weights0["pavement"] + i_weights0["markings"] + i_weights0["objects"] + i_weights0["unknown"];
	double total_l = l_weights0["pavement"] + l_weights0["markings"] + l_weights0["objects"] + l_weights0["unknown"];
	double total_weights = total_i + total_l;
	weights0.at<double>(0, 0) = (i_weights0["pavement"] + l_weights0["pavement"]) / total_weights;
	weights0.at<double>(1, 0) = (i_weights0["markings"] + l_weights0["markings"]) / total_weights;
	weights0.at<double>(2, 0) = (i_weights0["objects"] + l_weights0["objects"]) / total_weights;
	weights0.at<double>(3, 0) = (i_weights0["unknown"] + l_weights0["unknown"]) / total_weights;

	// cout << means0 << endl;

	// condi��es do EM
	// dims => samples.cols
	// if (!(&means0) || (!means0.empty() && means0.rows == nClusters && means0.cols == samples.cols && means0.channels() == 1)) cout << "means - ok!" << endl;

	EM em = EM(nClusters, EM::COV_MAT_DIAGONAL);
	em.set("maxIters", maxIters);
	em.trainE(samples, means0, covs0, weights0);
	
	// calcula o tempo de execu��o
	double tempoFim = static_cast<double>(getTickCount());
	double tempoExecutando = ((tempoFim - tempoInicio) / getTickFrequency()) * 1000;

	// exibe as sa�das definidas (texto e/ou imagem)
	if (verbose) cout << "- em opencv (2 features): " << tempoExecutando << " ms" << endl;
	if (display) {
		// predict
		Mat1b predictedImage = Mat1b(I_imageClone.size(), uchar(0));
		for (int j = 0; j < predictedImage.rows; ++j) {
			unsigned char *ptRowI = I_imageClone.ptr<uchar>(j);
			unsigned char *ptRowL = L_imageClone.ptr<uchar>(j);
			unsigned char *ptRowDst = predictedImage.ptr<uchar>(j);
			for (int i = 0; i < predictedImage.cols; ++i) {
				
				Mat1d elementPredict = Mat1d(Size(2, 1), CV_64FC1);
				elementPredict.at<double>(0) = ptRowL[i];
				elementPredict.at<double>(1) = ptRowI[i];
				
				Vec2d emPredicted = em.predict(elementPredict);
				switch ((int)emPredicted[1]) {
				case 0: ptRowDst[i] = 160; break;
				case 1: ptRowDst[i] = 255; break;
//.........这里部分代码省略.........
开发者ID:LCAD-UFES,项目名称:carmen_lcad,代码行数:101,代码来源:nieto.cpp

示例9: ExpectationMaximizationOpenCV

void Nieto::ExpectationMaximizationOpenCV(const Mat1b &inGrayFrameRoi, int maxIters, map<string, double> &_means0, map<string, double> &_covs0, map<string, double> &_weights0) {

	double tempoInicio = static_cast<double>(getTickCount());
	const int nClusters = 4; // 4 classes => {pavement, markings, objects, unknown}
	const bool aplicaResize = true;

	EM em = EM(nClusters, EM::COV_MAT_DIAGONAL);

	Mat1b grayFrameRoiClone = inGrayFrameRoi.clone();
	Mat1b trainGrayFrameRoiClone = inGrayFrameRoi.clone();
	if (aplicaResize) resize(grayFrameRoiClone, trainGrayFrameRoiClone, Size(160, 35), 0, 0, INTER_NEAREST);
	Mat1d samples = trainGrayFrameRoiClone.reshape(1, trainGrayFrameRoiClone.rows * trainGrayFrameRoiClone.cols);

	// formata o _means0
	Mat1d means0 = Mat1d(nClusters, 1, CV_64FC1);
	means0.at<double>(0) = _means0["pavement"];
	means0.at<double>(1) = _means0["markings"];
	means0.at<double>(2) = _means0["objects"];
	means0.at<double>(3) = 255.0 / 2.0;

	// formata o _covs0
	vector<Mat> covs0 = {
		Mat1d(1, 1, _covs0["pavement"]),
		Mat1d(1, 1, _covs0["markings"]),
		Mat1d(1, 1, _covs0["objects"]),
		Mat1d(1, 1, ((255.0 / 2.0) / sqrt(3)) * ((255.0 / 2.0) / sqrt(3)))
	};

	// formata o _weights0
	// Mat1d weights0 = *(Mat1f(nClusters, 1, CV_64FC1) << 0.75, 0.10, 0.10, 0.05);
	Mat1d weights0 = *(Mat1f(nClusters, 1, CV_64FC1) <<
		_weights0["pavement"],
		_weights0["markings"],
		_weights0["objects"],
		_weights0["unknown"]
		);

	// cout << means0 << endl;

	em.set("maxIters", maxIters);
	em.trainE(samples, means0, covs0, weights0);

	// calcula o tempo de execu��o
	double tempoFim = static_cast<double>(getTickCount());
	double tempoExecutando = ((tempoFim - tempoInicio) / getTickFrequency()) * 1000;

	// exibe as sa�das definidas (texto e/ou imagem)
	if (verbose) cout << "- em opencv (1 feature): " << tempoExecutando << " ms" << endl;
	if (display) {
		// predict
		Mat1b predictedImage = Mat1b(grayFrameRoiClone.size(), uchar(0));
		for (int j = 0; j < predictedImage.rows; ++j) {
			unsigned char *ptRowSrc = grayFrameRoiClone.ptr<uchar>(j);
			unsigned char *ptRowDst = predictedImage.ptr<uchar>(j);
			for (int i = 0; i < predictedImage.cols; ++i) {
				Vec2d emPredicted = em.predict(ptRowSrc[i]);
				switch ((int)emPredicted[1]) {
				case 0: ptRowDst[i] = 160; break;
				case 1: ptRowDst[i] = 255; break;
				case 2: ptRowDst[i] = 80; break;
				case 3: ptRowDst[i] = 0; break;
				}
			}
		}
		imshow("EM OpenCV - 1 Feature", predictedImage);
	}
}
开发者ID:LCAD-UFES,项目名称:carmen_lcad,代码行数:67,代码来源:nieto.cpp

示例10: featureL_IPM

void Nieto::featureL_IPM(const Mat1b &inGrayFrameFiltradoRoi, IPM * _ipm, map<string, double> &outMeans0, map<string, double> &outCovs0, map<string, double> &outWeights0) {

	double tempoInicio = static_cast<double>(getTickCount());

	Size imgSize = inGrayFrameFiltradoRoi.size();

	// Imagens que ser�o constru�das
	Mat1b _binaryMarkings = Mat1b(imgSize, uchar(0));
	Mat1b _binaryPavement = Mat1b(imgSize, uchar(0));
	Mat1b binaryMarkings = Mat1b(imgSize, uchar(0)); // NA IPM
	Mat1b binaryPavement = Mat1b(imgSize, uchar(0)); // NA IPM

	// pega o threshold inicial que separa as duas gaussianas (Pavement < thres < LaneMarkings)
	// Nieto: A reasonable threshold that separates these two components is the standard deviation
	Scalar meanFiltro, stddevFiltro;
	cv::meanStdDev(inGrayFrameFiltradoRoi, meanFiltro, stddevFiltro);

	// seta as m�scaras dos elementos que pertecem a mabas as classes
	_binaryMarkings = inGrayFrameFiltradoRoi >  stddevFiltro[0];
	_binaryPavement = inGrayFrameFiltradoRoi <= stddevFiltro[0];

	_ipm->applyHomography(_binaryMarkings, binaryMarkings, INTER_NEAREST);
	_ipm->applyHomography(_binaryPavement, binaryPavement, INTER_NEAREST);


	map<string, Scalar> meansScalar, stddevScalar;
	// ************************************** PAVEMENT
	cv::meanStdDev(inGrayFrameFiltradoRoi, meansScalar["pavement"], stddevScalar["pavement"], _binaryPavement);
	outMeans0["pavement"] = getMean(inGrayFrameFiltradoRoi, _binaryPavement);
	outCovs0["pavement"] = getVariance(inGrayFrameFiltradoRoi.clone(), outMeans0["pavement"], _binaryPavement);

	// ************************************** LANE MARKINGS
	cv::meanStdDev(inGrayFrameFiltradoRoi, meansScalar["markings"], stddevScalar["markings"], _binaryMarkings);
	outMeans0["markings"] = getMean(inGrayFrameFiltradoRoi, _binaryMarkings);
	outCovs0["markings"] = getVariance(inGrayFrameFiltradoRoi.clone(), outMeans0["markings"], _binaryMarkings);

	// ************************************** OBJECTS
	outMeans0["objects"] = outMeans0["pavement"];
	outCovs0["objects"] = outCovs0["pavement"];

	// ************************************** UNKNOWN
	outMeans0["unknown"] = 255.0 / 2.0;
	outCovs0["unknown"] = ((255.0 / 2.0) / sqrt(3)) * ((255.0 / 2.0) / sqrt(3));

	// calcula os pesos => propor��o de cada classe
	double nPavements = countNonZero(binaryPavement);
	double nMarkings = countNonZero(binaryMarkings);
	double nTotal = nPavements + nMarkings;
	double nUnknown = nTotal * 0.05;
	nTotal += nUnknown;
	outWeights0["pavement"] = (nPavements / 2) / nTotal;
	outWeights0["objects"] = outWeights0["pavement"];
	outWeights0["markings"] = nMarkings / nTotal;
	outWeights0["unknown"] = nUnknown / nTotal;

	// calcula o tempo de execu��o
	double tempoFim = static_cast<double>(getTickCount());
	double tempoExecutando = ((tempoFim - tempoInicio) / getTickFrequency()) * 1000;

	// exibe as sa�das definidas (texto e/ou imagem)
	if (verbose) cout << "- nieto.featureL: " << tempoExecutando << " ms" << endl;

	// if (config.display)
	// imshow("L - binaryMarkings", binaryMarkings);
	// imshow("L - binaryPavement", binaryPavement);


	/*
	if (display) {
	Mat1b imgResultNietoMasks = Mat1b(Size(grayFrameRoiIPM.cols, grayFrameRoiIPM.rows * 4), uchar(0));

	grayPavement.copyTo(imgResultNietoMasks(Rect(0, 0, grayFrameRoiIPM.cols, grayFrameRoiIPM.rows)));
	grayMarkings.copyTo(imgResultNietoMasks(Rect(0, grayFrameRoiIPM.rows, grayFrameRoiIPM.cols, grayFrameRoiIPM.rows)));
	grayObjects.copyTo(imgResultNietoMasks(Rect(0, 2 * grayFrameRoiIPM.rows, grayFrameRoiIPM.cols, grayFrameRoiIPM.rows)));

	imgResultNietoMasks(Rect(0, 3 * grayFrameRoiIPM.rows, grayFrameRoiIPM.cols, grayFrameRoiIPM.rows)).setTo(85, binaryPavement);
	imgResultNietoMasks(Rect(0, 3 * grayFrameRoiIPM.rows, grayFrameRoiIPM.cols, grayFrameRoiIPM.rows)).setTo(170, binaryObjects);
	imgResultNietoMasks(Rect(0, 3 * grayFrameRoiIPM.rows, grayFrameRoiIPM.cols, grayFrameRoiIPM.rows)).setTo(255, binaryMarkings);
	imgResultNietoMasks(Rect(0, 3 * grayFrameRoiIPM.rows, grayFrameRoiIPM.cols, grayFrameRoiIPM.rows)).setTo(0, binaryUnknown);

	imshow("Nieto - Mascaras", imgResultNietoMasks);

	// imshow("binaryIpmInvMask", binaryIpmInvMask);

	// descomente para visualizar o que foi calculado para o Pavement
	// imshow("grayPavement", grayPavement);
	// imshow("binaryPavement", binaryPavement);
	// cout << "p.mean: " << means0["pavement"] << ", p.covs: " << covs0["pavement"] << endl;

	// descomente para visualizar o que foi calculado para os Lane Markings
	// imshow("grayMarkings", grayMarkings);
	// imshow("binaryMarkings", binaryMarkings);
	// cout << "lm.mean: " << means0["markings"] << ", lm.covs: " << covs0["markings"] << endl;

	// descomente para visualizar o que foi calculado para os Objects
	// imshow("grayObjects", grayObjects);
	// imshow("binaryObjects", binaryObjects);
	// cout << "obj.mean: " << means0["objects"] << ", obj.covs: " << covs0["objects"] << endl;

	// descomente para visualizar o que foi calculado para o Unknown
//.........这里部分代码省略.........
开发者ID:LCAD-UFES,项目名称:carmen_lcad,代码行数:101,代码来源:nieto.cpp


注:本文中的Mat1b::clone方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。