本文整理汇总了C++中MapVector::rend方法的典型用法代码示例。如果您正苦于以下问题:C++ MapVector::rend方法的具体用法?C++ MapVector::rend怎么用?C++ MapVector::rend使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MapVector
的用法示例。
在下文中一共展示了MapVector::rend方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: analyzeInterleaving
// Analyze interleaved accesses and collect them into interleaved load and
// store groups.
//
// When generating code for an interleaved load group, we effectively hoist all
// loads in the group to the location of the first load in program order. When
// generating code for an interleaved store group, we sink all stores to the
// location of the last store. This code motion can change the order of load
// and store instructions and may break dependences.
//
// The code generation strategy mentioned above ensures that we won't violate
// any write-after-read (WAR) dependences.
//
// E.g., for the WAR dependence: a = A[i]; // (1)
// A[i] = b; // (2)
//
// The store group of (2) is always inserted at or below (2), and the load
// group of (1) is always inserted at or above (1). Thus, the instructions will
// never be reordered. All other dependences are checked to ensure the
// correctness of the instruction reordering.
//
// The algorithm visits all memory accesses in the loop in bottom-up program
// order. Program order is established by traversing the blocks in the loop in
// reverse postorder when collecting the accesses.
//
// We visit the memory accesses in bottom-up order because it can simplify the
// construction of store groups in the presence of write-after-write (WAW)
// dependences.
//
// E.g., for the WAW dependence: A[i] = a; // (1)
// A[i] = b; // (2)
// A[i + 1] = c; // (3)
//
// We will first create a store group with (3) and (2). (1) can't be added to
// this group because it and (2) are dependent. However, (1) can be grouped
// with other accesses that may precede it in program order. Note that a
// bottom-up order does not imply that WAW dependences should not be checked.
void InterleavedAccessInfo::analyzeInterleaving(
bool EnablePredicatedInterleavedMemAccesses) {
LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
const ValueToValueMap &Strides = LAI->getSymbolicStrides();
// Holds all accesses with a constant stride.
MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
collectConstStrideAccesses(AccessStrideInfo, Strides);
if (AccessStrideInfo.empty())
return;
// Collect the dependences in the loop.
collectDependences();
// Holds all interleaved store groups temporarily.
SmallSetVector<InterleaveGroup *, 4> StoreGroups;
// Holds all interleaved load groups temporarily.
SmallSetVector<InterleaveGroup *, 4> LoadGroups;
// Search in bottom-up program order for pairs of accesses (A and B) that can
// form interleaved load or store groups. In the algorithm below, access A
// precedes access B in program order. We initialize a group for B in the
// outer loop of the algorithm, and then in the inner loop, we attempt to
// insert each A into B's group if:
//
// 1. A and B have the same stride,
// 2. A and B have the same memory object size, and
// 3. A belongs in B's group according to its distance from B.
//
// Special care is taken to ensure group formation will not break any
// dependences.
for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
BI != E; ++BI) {
Instruction *B = BI->first;
StrideDescriptor DesB = BI->second;
// Initialize a group for B if it has an allowable stride. Even if we don't
// create a group for B, we continue with the bottom-up algorithm to ensure
// we don't break any of B's dependences.
InterleaveGroup *Group = nullptr;
if (isStrided(DesB.Stride) &&
(!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
Group = getInterleaveGroup(B);
if (!Group) {
LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
<< '\n');
Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
}
if (B->mayWriteToMemory())
StoreGroups.insert(Group);
else
LoadGroups.insert(Group);
}
for (auto AI = std::next(BI); AI != E; ++AI) {
Instruction *A = AI->first;
StrideDescriptor DesA = AI->second;
// Our code motion strategy implies that we can't have dependences
// between accesses in an interleaved group and other accesses located
// between the first and last member of the group. Note that this also
// means that a group can't have more than one member at a given offset.
// The accesses in a group can have dependences with other accesses, but
//.........这里部分代码省略.........