本文整理汇总了C++中ME_Model::classify方法的典型用法代码示例。如果您正苦于以下问题:C++ ME_Model::classify方法的具体用法?C++ ME_Model::classify怎么用?C++ ME_Model::classify使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ME_Model
的用法示例。
在下文中一共展示了ME_Model::classify方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: classify_samples
RcppExport SEXP classify_samples(int nrows, int ncols, vector<double> ia, vector<string> ja, vector<double> ra, string model_data) {
new_model();
model.load_from_string(model_data);
vector<string> results;
vector<string> probability_names;
NumericMatrix probability_matrix(nrows,model.num_classes());
for (int i=0; i < nrows; i++) { // for each document
//Rprintf("Document %d\n",i); // debug output
ME_Sample newSample; // create new sample for code
for (int j=ia[i]-1; j < ia[i+1]-1; j++) { // for each feature
newSample.add_feature(ja[j],ra[j]);
}
vector<double> prob = model.classify(newSample);
for (int k=0; k < model.num_classes(); k++) {
probability_matrix(i,k) = prob[k];
}
results.push_back(newSample.label);
}
for (int k=0; k < model.num_classes(); k++) {
probability_names.push_back(model.get_class_label(k));
}
List rs = List::create(results,probability_matrix,probability_names);
return rs;
}
示例2: mesample
static void
decode_no_context(vector<Token> & vt, const ME_Model & me_none)
{
int n = vt.size();
if (n == 0) return;
for (size_t i = 0; i < n; i++) {
ME_Sample mes = mesample(vt, i, "", "", "", "");
me_none.classify(mes);
vt[i].prd = mes.label;
}
for (size_t k = 0; k < n; k++) {
cout << vt[k].str << "/" << vt[k].prd << " ";
}
cout << endl;
}
示例3: test
void test(const ME_Model & model, const string & filename)
{
ifstream ifile(filename.c_str());
if (!ifile) {
cerr << "error: cannot open " << filename << endl;
exit(1);
}
int num_correct = 0;
int num_tokens = 0;
string line;
while (getline(ifile, line)) {
vector<Token> vs = read_line(line);
for (int j = 0; j < (int)vs.size(); j++) {
ME_Sample mes = sample(vs, j);
model.classify(mes);
if (mes.label == vs[j].pos) num_correct++;
num_tokens++;
}
}
cout << "accuracy = " << num_correct << " / " << num_tokens << " = "
<< (double)num_correct / num_tokens << endl;
}
示例4: main
int main(int argc, char* argv[])
{
if (argc < 3 || argc > 4) {
cerr << "Usage: " << argv[0] << "input output [path-to-ruby]" << endl;
exit(1);
}
ME_Model model;
string inFile = argv[1];
string outFile = argv[2];
//string modelFile = argv[3];
string modelFile = "model1-1.0";
string rubyCommand = (argc == 4) ? argv[3] : "ruby";
string eventFile = inFile + ".event";
string resultFile = inFile + ".result";
cerr << "Extracting events.";
string extractionCommand =
rubyCommand + " EventExtracter.rb " + inFile + " " + eventFile;
system(extractionCommand.c_str());
cerr << "roading model file." << endl;
model.load_from_file(modelFile.c_str());
//model.load_from_file("model" + setID + "-" + ineq);
//ifstream fileIn(string("/home/users/y-matsu/private/workspace/eclipse-workspace/GENIASS/" + setID + "/test.txt").c_str());
//ofstream fileOut(string("/home/users/y-matsu/private/workspace/eclipse-workspace/GENIASS/" + setID + "/test-" + ineq + ".prob").c_str());
ifstream fileIn(eventFile.c_str());
ofstream fileOut(resultFile.c_str());
string line, markedTxt;
getline(fileIn, markedTxt);
cerr << "start classification." << endl;
while (getline(fileIn, line)){
vector<string> tokens;
split(line, tokens);
ME_Sample s;
for(vector<string>::const_iterator token = tokens.begin() + 1;
token != tokens.end(); ++token){
s.add_feature(*token);
}
(void) model.classify(s);
fileOut << s.label << endl;
}
fileOut.close();
fileIn.close();
remove(eventFile.c_str());
string splitCommand =
rubyCommand + " Classifying2Splitting.rb "
+ resultFile + " " + markedTxt + " " + outFile;
system(splitCommand.c_str());
return 0;
}
示例5: vd
void
viterbi(vector<Token> & vt, const ME_Model & me)
{
if (vt.size() == 0) return;
vector< vector<double> > mat;
vector< vector<int> > bpm;
vector<double> vd(me.num_classes());
for (size_t j = 0; j < vd.size(); j++) vd[j] = 0;
mat.push_back(vd);
for (size_t i = 0; i < vt.size(); i++) {
vector<double> vd(me.num_classes());
for (size_t j = 0; j < vd.size(); j++) vd[j] = -999999;
vector<int> bp(me.num_classes());
double maxl = -999999;
for (size_t j = 0; j < vd.size(); j++) {
if (mat[i][j] > maxl) maxl = mat[i][j];
}
for (size_t j = 0; j < vd.size(); j++) {
if (mat[i][j] < maxl - BEAM_WIDTH) continue; // beam thresholding
string prepos = me.get_class_label(j);
if (i == 0) {
if (j > 0) continue;
prepos = "BOS";
}
// prepos = me.get_class_name(j);
// if (i == 0 && prepos != "BOS") continue;
ME_Sample mes = mesample(vt, i, prepos);
vector<double> membp = me.classify(mes);
for (size_t k = 0; k < vd.size(); k++) {
double l = mat[i][j] + log(membp[k]);
if (l > vd[k]) {
bp[k] = j;
vd[k] = l;
}
}
}
mat.push_back(vd);
// for (int k = 0; k < vd.size(); k++) cout << bp[k] << " ";
// cout << endl;
bpm.push_back(bp);
}
/*
for (int i = 0; i < vt.size(); i++) {
int max_prd = 0;
for (int j = 0; j < vd.size(); j++) {
double l = mat[i+1][j];
if (l > mat[i+1][max_prd]) {
max_prd = j;
}
}
vt[i].prd = me.get_class_name(max_prd);
}
*/
// cout << "viterbi ";
int max_prd = 0;
int n = vt.size();
for (size_t j = 0; j < vd.size(); j++) {
double l = mat[n][j];
if (l > mat[n][max_prd]) {
max_prd = j;
}
}
vt[n-1].prd = me.get_class_label(max_prd);
for (int i = vt.size() - 2; i >= 0; i--) {
// cout << max_prd << " ";
// cerr << max_prd << " ";
if (max_prd < 0 || max_prd >= me.num_classes()) exit(0);
max_prd = bpm[i+1][max_prd];
vt[i].prd = me.get_class_label(max_prd);
}
// cout << endl;
}