当前位置: 首页>>代码示例>>C++>>正文


C++ MCWalkerConfiguration::setGlobalNumWalkers方法代码示例

本文整理汇总了C++中MCWalkerConfiguration::setGlobalNumWalkers方法的典型用法代码示例。如果您正苦于以下问题:C++ MCWalkerConfiguration::setGlobalNumWalkers方法的具体用法?C++ MCWalkerConfiguration::setGlobalNumWalkers怎么用?C++ MCWalkerConfiguration::setGlobalNumWalkers使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MCWalkerConfiguration的用法示例。


在下文中一共展示了MCWalkerConfiguration::setGlobalNumWalkers方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: branch

  int WalkerControlBase::branch(int iter, MCWalkerConfiguration& W, RealType trigger) {

    int prefill_numwalkers = sortWalkers(W);

    measureProperties(iter);
    W.EnsembleProperty=EnsembleProperty;

    //un-biased variance but we use the saimple one
    //W.EnsembleProperty.Variance=(e2sum*wsum-esum*esum)/(wsum*wsum-w2sum);

    ////add to the accumData for block average: REMOVE THIS
    //accumData[ENERGY_INDEX]     += curData[ENERGY_INDEX]*wgtInv;
    //accumData[ENERGY_SQ_INDEX]  += curData[ENERGY_SQ_INDEX]*wgtInv;
    //accumData[WALKERSIZE_INDEX] += curData[WALKERSIZE_INDEX];
    //accumData[WEIGHT_INDEX]     += curData[WEIGHT_INDEX];

    int nw_tot = copyWalkers(W);

    //set Weight and Multiplicity to default values
    MCWalkerConfiguration::iterator it(W.begin()),it_end(W.end());
    while(it != it_end) {
      (*it)->Weight= 1.0;
      (*it)->Multiplicity=1.0;
      ++it;
    }

    //set the global number of walkers
    W.setGlobalNumWalkers(nw_tot);

    return prefill_numwalkers;
  }
开发者ID:digideskio,项目名称:qmcpack,代码行数:31,代码来源:WalkerControlBase.cpp

示例2: wgtInv

int 
WalkerControlMPI::branch(int iter, MCWalkerConfiguration& W, RealType trigger) {

  std::fill(curData.begin(),curData.end(),0);
  //std::fill(NumPerNode.begin(),NumPerNode.end(),0);
  sortWalkers(W);

  //update the number of walkers for this node
  curData[LE_MAX+MyContext]=NumWalkers;

  int nw = copyWalkers(W);

  myComm->allreduce(curData);

  RealType wgtInv(1.0/curData[WEIGHT_INDEX]);
  accumData[ENERGY_INDEX]     += curData[ENERGY_INDEX]*wgtInv;
  accumData[ENERGY_SQ_INDEX]  += curData[ENERGY_SQ_INDEX]*wgtInv;
  accumData[WALKERSIZE_INDEX] += curData[WALKERSIZE_INDEX];
  accumData[WEIGHT_INDEX]     += curData[WEIGHT_INDEX];

  Cur_pop=0;
  for(int i=0, j=LE_MAX; i<NumContexts; i++,j++) {
    Cur_pop+= NumPerNode[i]=static_cast<int>(curData[j]);
  }

  swapWalkersSimple(W); 

  //Do not need to use a trigger.
  //Cur_min=Nmax; 
  //Cur_max=0; 
  //Cur_pop=0;
  //for(int i=0, j=LE_MAX; i<NumContexts; i++,j++) {
  //  Cur_pop+= NumPerNode[i]=static_cast<int>(curData[j]);
  //  Cur_min = std::min(Cur_min,NumPerNode[i]);
  //  Cur_max = std::max(Cur_max,NumPerNode[i]);
  //}
  //int max_diff = std::max(Cur_max*NumContexts-Cur_pop,Cur_pop-Cur_min*NumContexts);
  //double diff_pop = static_cast<double>(max_diff)/static_cast<double>(Cur_pop);
  //if(diff_pop > trigger) { 
  //  swapWalkersSimple(W); 
  //  //swapWalkersMap(W); 
  //}

  //set Weight and Multiplicity to default values
  MCWalkerConfiguration::iterator it(W.begin()),it_end(W.end());
  while(it != it_end) {
    (*it)->Weight= 1.0;
    (*it)->Multiplicity=1.0;
    ++it;
  }

  //update the global number of walkers
  W.setGlobalNumWalkers(Cur_pop);
  return Cur_pop;
}
开发者ID:digideskio,项目名称:qmcpack,代码行数:55,代码来源:WalkerControlMPI.cpp

示例3: initWalkerController

  void SimpleFixedNodeBranch::initWalkerController(MCWalkerConfiguration& walkers, RealType tau, bool fixW) 
  {

    vParam[B_TAU]=tau;
    if(!BranchMode[B_DMCSTAGE])
      vParam[B_TAUEFF]=tau*R2Accepted.result()/R2Proposed.result();
    
    if(WalkerController == 0) 
    {
      if(iParam[B_TARGETWALKERS]==0) 
      {
        Communicate* acomm=MyEstimator->getCommunicator();
        int ncontexts=acomm->size();
        vector<int> nw(ncontexts,0),nwoff(ncontexts+1,0);
        nw[acomm->rank()]=walkers.getActiveWalkers();
        acomm->allreduce(nw);
        for(int ip=0; ip<ncontexts; ++ip) nwoff[ip+1]=nwoff[ip]+nw[ip];
        walkers.setGlobalNumWalkers(nwoff[ncontexts]);
        walkers.setWalkerOffsets(nwoff);
        iParam[B_TARGETWALKERS]=nwoff[ncontexts];
      }


      BranchMode.set(B_DMC,1);//set DMC
      BranchMode.set(B_POPCONTROL,!fixW);//fixW -> 0 
      WalkerController = createWalkerController(iParam[B_TARGETWALKERS], MyEstimator->getCommunicator(), myNode);
      iParam[B_MAXWALKERS]=WalkerController->Nmax;
      iParam[B_MINWALKERS]=WalkerController->Nmin;

      if(!fixW && sParam[MIXDMCOPT]=="yes")
      {
        app_log() << "Warmup DMC is done with a fixed population " << iParam[B_TARGETWALKERS] << endl;
        BackupWalkerController=WalkerController; //save the main controller
        WalkerController=createWalkerController(iParam[B_TARGETWALKERS],MyEstimator->getCommunicator(), myNode,true);
        BranchMode.set(B_POPCONTROL,0);
      }
      WalkerController->setWalkerID(walkers);
      PopHist.clear();
      PopHist.reserve(std::max(iParam[B_ENERGYUPDATEINTERVAL],5));
    }

    //save the BranchMode in anticipating state changes in reset
    bitset<B_MODE_MAX> bmode(BranchMode);
    //reset Feedback pararmeter
    this->reset();

    MyEstimator->reset();
    //update the simulation parameters
    WalkerController->put(myNode);
    //assign current Eref and a large number for variance
    WalkerController->setEnergyAndVariance(vParam[B_EREF],vParam[B_SIGMA]);

    //determine the branch cutoff to limit wild weights based on the sigma and sigmaBound
    RealType sigma=std::max(std::sqrt(static_cast<RealType>(iParam[B_TARGETWALKERS]))*vParam[B_SIGMA]*WalkerController->targetSigma,
			    static_cast<RealType>(100.0));
    vParam[B_BRANCHCUTOFF]=std::min(sigma,5.0/tau);
    //vParam[B_BRANCHCUTOFF]=vParam[B_SIGMA]*WalkerController->targetSigma;
    vParam[B_BRANCHMAX]=vParam[B_BRANCHCUTOFF]*1.5;
    vParam[B_BRANCHFILTER]=1.0/(vParam[B_BRANCHMAX]-vParam[B_BRANCHCUTOFF]);

    //reset controller 
    WalkerController->reset();
    if(BackupWalkerController) BackupWalkerController->reset();
    BranchMode=bmode;

    app_log() << "  QMC counter      = " << iParam[B_COUNTER] << endl;
    app_log() << "  time step        = " << vParam[B_TAU] << endl;
    app_log() << "  effective time step = " << vParam[B_TAUEFF] << endl;
    app_log() << "  trial energy     = " << vParam[B_ETRIAL] << endl;
    app_log() << "  reference energy = " << vParam[B_EREF] << endl;
    app_log() << "  Feedback = " << Feedback <<  endl;
    app_log() << "  reference variance = " << vParam[B_SIGMA] << endl;
    app_log() << "  target walkers = " << iParam[B_TARGETWALKERS] << endl;
    app_log() << "  branch cutoff = " <<  vParam[B_BRANCHCUTOFF] << " " << vParam[B_BRANCHMAX] << endl;
    app_log() << "  Max and mimum walkers per node= " << iParam[B_MAXWALKERS] << " " << iParam[B_MINWALKERS] << endl;
    app_log() << "  QMC Status (BranchMode) = " << BranchMode << endl;
  }
开发者ID:digideskio,项目名称:qmcpack,代码行数:77,代码来源:SimpleFixedNodeBranch.cpp

示例4: initWalkerController

//void SimpleFixedNodeBranch::initWalkerController(MCWalkerConfiguration& walkers, RealType tau, bool fixW, bool killwalker) 
  void SimpleFixedNodeBranch::initWalkerController(MCWalkerConfiguration& walkers, bool fixW, bool killwalker) 
  {
    BranchMode.set(B_DMC,1);//set DMC
    BranchMode.set(B_DMCSTAGE,iParam[B_WARMUPSTEPS]==0);//use warmup

    //this is not necessary
    //check if tau is different and set the initial values
    //vParam[B_TAU]=tau;

    bool fromscratch=false;
    RealType tau=vParam[B_TAU];

    //this is the first time DMC is used
    if(WalkerController == 0) 
    {
      if(iParam[B_TARGETWALKERS]==0) 
      {
        Communicate* acomm=MyEstimator->getCommunicator();
        int ncontexts=acomm->size();
        vector<int> nw(ncontexts,0),nwoff(ncontexts+1,0);
        nw[acomm->rank()]=walkers.getActiveWalkers();
        acomm->allreduce(nw);
        for(int ip=0; ip<ncontexts; ++ip) nwoff[ip+1]=nwoff[ip]+nw[ip];
        walkers.setGlobalNumWalkers(nwoff[ncontexts]);
        walkers.setWalkerOffsets(nwoff);
        iParam[B_TARGETWALKERS]=nwoff[ncontexts];
      }

      WalkerController = createWalkerController(iParam[B_TARGETWALKERS], MyEstimator->getCommunicator(), myNode);

      if(!BranchMode[B_RESTART])
      {
        fromscratch=true;
        app_log() << "  START ALL OVER " << endl;
        vParam[B_TAUEFF]=tau;
        BranchMode.set(B_POPCONTROL,!fixW);//fixW -> 0 
        BranchMode.set(B_KILLNODES,killwalker);
        iParam[B_MAXWALKERS]=WalkerController->Nmax;
        iParam[B_MINWALKERS]=WalkerController->Nmin;

        if(!fixW && sParam[MIXDMCOPT]=="yes")
        {
          app_log() << "Warmup DMC is done with a fixed population " << iParam[B_TARGETWALKERS] << endl;
          BackupWalkerController=WalkerController; //save the main controller
          WalkerController=createWalkerController(iParam[B_TARGETWALKERS],MyEstimator->getCommunicator(), myNode,true);
          BranchMode.set(B_POPCONTROL,0);
        }
        //PopHist.clear();
        //PopHist.reserve(std::max(iParam[B_ENERGYUPDATEINTERVAL],5));
      }
      WalkerController->setWalkerID(walkers);
    }
    //else
    //{
    //  BranchMode.set(B_DMCSTAGE,0);//always reset warmup
    //}

    MyEstimator->reset();
    //update the simulation parameters
    WalkerController->put(myNode);
    //assign current Eref and a large number for variance
    WalkerController->setEnergyAndVariance(vParam[B_EREF],vParam[B_SIGMA]);

    this->reset();

    if(fromscratch)
    {
      //determine the branch cutoff to limit wild weights based on the sigma and sigmaBound
      //RealType sigma=std::max(std::sqrt(static_cast<RealType>(iParam[B_TARGETWALKERS]))*vParam[B_SIGMA]*WalkerController->targetSigma,100.0);
      RealType sigma=std::max(std::sqrt(vParam[B_SIGMA])*WalkerController->targetSigma,50.0);
      vParam[B_BRANCHCUTOFF]=std::min(sigma,2.5/tau);
      //vParam[B_BRANCHCUTOFF]=vParam[B_SIGMA]*WalkerController->targetSigma;
      vParam[B_BRANCHMAX]=vParam[B_BRANCHCUTOFF]*1.5;
      vParam[B_BRANCHFILTER]=1.0/(vParam[B_BRANCHMAX]-vParam[B_BRANCHCUTOFF]);
      vParam[B_TAUEFF]=tau*R2Accepted.result()/R2Proposed.result();
    }

    //reset controller 
    WalkerController->reset();
    if(BackupWalkerController) BackupWalkerController->reset();

    app_log() << "  QMC counter      = " << iParam[B_COUNTER] << endl;
    app_log() << "  time step        = " << vParam[B_TAU] << endl;
    app_log() << "  effective time step = " << vParam[B_TAUEFF] << endl;
    app_log() << "  trial energy     = " << vParam[B_ETRIAL] << endl;
    app_log() << "  reference energy = " << vParam[B_EREF] << endl;
    app_log() << "  Feedback = " << vParam[B_FEEDBACK] <<  endl;
    app_log() << "  reference variance = " << vParam[B_SIGMA] << endl;
    app_log() << "  target walkers = " << iParam[B_TARGETWALKERS] << endl;
    app_log() << "  branch cutoff = " <<  vParam[B_BRANCHCUTOFF] << " " << vParam[B_BRANCHMAX] << endl;
    app_log() << "  Max and mimum walkers per node= " << iParam[B_MAXWALKERS] << " " << iParam[B_MINWALKERS] << endl;
    app_log() << "  QMC Status (BranchMode) = " << BranchMode << endl;
  }
开发者ID:digideskio,项目名称:qmcpack,代码行数:94,代码来源:SimpleFixedNodeBranch.cpp


注:本文中的MCWalkerConfiguration::setGlobalNumWalkers方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。