当前位置: 首页>>代码示例>>C++>>正文


C++ LinearRegression::Predict方法代码示例

本文整理汇总了C++中LinearRegression::Predict方法的典型用法代码示例。如果您正苦于以下问题:C++ LinearRegression::Predict方法的具体用法?C++ LinearRegression::Predict怎么用?C++ LinearRegression::Predict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在LinearRegression的用法示例。


在下文中一共展示了LinearRegression::Predict方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: LDA_predict

void LDA_predict(const std::string &year) {
	string type = "simulation";	
	//string modelFile = "LDA_result/" + year + "LDA_model_whole.csv";	
	string modelFile = "LDA_result/" + year + "LDA_model.csv";
	string testFile = "training_set/" + type + "/" + year + "/" + year + "training_set_normalise" + ".csv"; 
 	string label_file = "training_set/" + type + "/" + year + "/" + year + "label_set" + ".csv"; 
	// string label_file = "wholeTrainingset/" + year + "label_set_whole.csv";	
	LinearRegression lr;
  	lr = LinearRegression(modelFile);
	
	arma::mat points;
    	data::Load(testFile, points, true);
    	
    // Load the test file data.
   // arma::mat points;
   // data::Load(training_file, points, true);
  
    // Perform the predictions using our model.
    arma::vec predictions;
    lr.Predict(points, predictions);

    // Save predictions.
    //predictions = arma::trans(predictions);
	string predictFile = "LDA_result/" + year + "LDA_prediction.csv";
    data::Save(predictFile, predictions, true);

	std::vector<int> labels = read_line(label_file);
	std::vector<int> p = read_line (predictFile);
	int num = 0;
	if (p.size() == labels.size()) {
		for (unsigned i = 0; i < p.size(); i++) {
			if (p[i] > 0) {
				p[i] = 1;
			} else {
				p[i] = -1;
			}
			if (p[i] == labels[i]) {
				num++;
			}
		}
	}
	double rate = (double)num/(double)p.size();
	std::cout<<num<<"/"<<p.size()<<" "<<rate<<endl;
}
开发者ID:kaiwu1121,项目名称:NBA-Games-Prediction-System,代码行数:44,代码来源:linear_regression.cpp

示例2: main

int main(int argc, char* argv[])
{
  // Handle parameters.
  CLI::ParseCommandLine(argc, argv);

  const string inputModelFile = CLI::GetParam<string>("input_model_file");
  const string outputModelFile = CLI::GetParam<string>("output_model_file");
  const string outputPredictionsFile =
      CLI::GetParam<string>("output_predictions");
  const string trainingResponsesFile =
      CLI::GetParam<string>("training_responses");
  const string testFile = CLI::GetParam<string>("test_file");
  const string trainFile = CLI::GetParam<string>("training_file");
  const double lambda = CLI::GetParam<double>("lambda");

  mat regressors;
  mat responses;

  LinearRegression lr;
  lr.Lambda() = lambda;

  bool computeModel = false;

  // We want to determine if an input file XOR model file were given.
  if (!CLI::HasParam("training_file"))
  {
    if (!CLI::HasParam("input_model_file"))
      Log::Fatal << "You must specify either --input_file or --model_file."
          << endl;
    else // The model file was specified, no problems.
      computeModel = false;
  }
  // The user specified an input file but no model file, no problems.
  else if (!CLI::HasParam("input_model_file"))
    computeModel = true;
  // The user specified both an input file and model file.
  // This is ambiguous -- which model should we use? A generated one or given
  // one?  Report error and exit.
  else
  {
    Log::Fatal << "You must specify either --input_file or --model_file, not "
        << "both." << endl;
  }

  if (CLI::HasParam("test_file") && !CLI::HasParam("output_predictions"))
    Log::Warn << "--test_file (-t) specified, but --output_predictions "
        << "(-o) is not; no results will be saved." << endl;

  // If they specified a model file, we also need a test file or we
  // have nothing to do.
  if (!computeModel && !CLI::HasParam("test_file"))
  {
    Log::Fatal << "When specifying --model_file, you must also specify "
        << "--test_file." << endl;
  }

  if (!computeModel && CLI::HasParam("lambda"))
  {
    Log::Warn << "--lambda ignored because no model is being trained." << endl;
  }

  // An input file was given and we need to generate the model.
  if (computeModel)
  {
    Timer::Start("load_regressors");
    data::Load(trainFile, regressors, true);
    Timer::Stop("load_regressors");

    // Are the responses in a separate file?
    if (CLI::HasParam("training_responses"))
    {
      // The initial predictors for y, Nx1.
      responses = trans(regressors.row(regressors.n_rows - 1));
      regressors.shed_row(regressors.n_rows - 1);
    }
    else
    {
      // The initial predictors for y, Nx1.
      Timer::Start("load_responses");
      data::Load(trainingResponsesFile, responses, true);
      Timer::Stop("load_responses");

      if (responses.n_rows == 1)
        responses = trans(responses); // Probably loaded backwards.

      if (responses.n_cols > 1)
        Log::Fatal << "The responses must have one column.\n";

      if (responses.n_rows != regressors.n_cols)
        Log::Fatal << "The responses must have the same number of rows as the "
            "training file.\n";
    }

    Timer::Start("regression");
    lr = LinearRegression(regressors, responses.unsafe_col(0));
    Timer::Stop("regression");

    // Save the parameters.
    if (CLI::HasParam("output_model_file"))
      data::Save(outputModelFile, "linearRegressionModel", lr);
//.........这里部分代码省略.........
开发者ID:AmesianX,项目名称:mlpack,代码行数:101,代码来源:linear_regression_main.cpp

示例3: mlpackMain

static void mlpackMain()
{
  const double lambda = CLI::GetParam<double>("lambda");

  RequireOnlyOnePassed({ "training", "input_model" }, true);

  ReportIgnoredParam({{ "test", true }}, "output_predictions");

  mat regressors;
  rowvec responses;

  LinearRegression lr;

  const bool computeModel = !CLI::HasParam("input_model");
  const bool computePrediction = CLI::HasParam("test");

  // If they specified a model file, we also need a test file or we
  // have nothing to do.
  if (!computeModel)
  {
    RequireAtLeastOnePassed({ "test" }, true, "test points must be specified "
        "when an input model is given");
  }

  ReportIgnoredParam({{ "input_model", true }}, "lambda");

  RequireAtLeastOnePassed({ "output_model", "output_predictions" }, false,
      "no output will be saved");

  // An input file was given and we need to generate the model.
  if (computeModel)
  {
    Timer::Start("load_regressors");
    regressors = std::move(CLI::GetParam<mat>("training"));
    Timer::Stop("load_regressors");

    // Are the responses in a separate file?
    if (!CLI::HasParam("training_responses"))
    {
      // The initial predictors for y, Nx1.
      if (regressors.n_rows < 2)
      {
        Log::Fatal << "Can't get responses from training data "
            "since it has less than 2 rows." << endl;
      }
      responses = regressors.row(regressors.n_rows - 1);
      regressors.shed_row(regressors.n_rows - 1);
    }
    else
    {
      // The initial predictors for y, Nx1.
      Timer::Start("load_responses");
      responses = CLI::GetParam<rowvec>("training_responses");
      Timer::Stop("load_responses");

      if (responses.n_cols != regressors.n_cols)
      {
        Log::Fatal << "The responses must have the same number of columns "
            "as the training set." << endl;
      }
    }

    Timer::Start("regression");
    lr = LinearRegression(regressors, responses, lambda);
    Timer::Stop("regression");
  }
  else
  {
    // A model file was passed in, so load it.
    Timer::Start("load_model");
    lr = std::move(CLI::GetParam<LinearRegression>("input_model"));
    Timer::Stop("load_model");
  }

  // Did we want to predict, too?
  if (computePrediction)
  {
    // Load the test file data.
    Timer::Start("load_test_points");
    mat points = std::move(CLI::GetParam<mat>("test"));
    Timer::Stop("load_test_points");

    // Ensure that test file data has the right number of features.
    if ((lr.Parameters().n_elem - 1) != points.n_rows)
    {
      Log::Fatal << "The model was trained on " << lr.Parameters().n_elem - 1
          << "-dimensional data, but the test points in '"
          << CLI::GetPrintableParam<mat>("test") << "' are " << points.n_rows
          << "-dimensional!" << endl;
    }

    // Perform the predictions using our model.
    rowvec predictions;
    Timer::Start("prediction");
    lr.Predict(points, predictions);
    Timer::Stop("prediction");

    // Save predictions.
    if (CLI::HasParam("output_predictions"))
      CLI::GetParam<rowvec>("output_predictions") = std::move(predictions);
//.........这里部分代码省略.........
开发者ID:sbrodehl,项目名称:mlpack,代码行数:101,代码来源:linear_regression_main.cpp


注:本文中的LinearRegression::Predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。