本文整理汇总了C++中LayerParams::get方法的典型用法代码示例。如果您正苦于以下问题:C++ LayerParams::get方法的具体用法?C++ LayerParams::get怎么用?C++ LayerParams::get使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类LayerParams
的用法示例。
在下文中一共展示了LayerParams::get方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
Ptr<Layer> createLayerFromCaffe<EltwiseLayer>(LayerParams& params)
{
EltwiseLayer::EltwiseOp op = EltwiseLayer::SUM;
if (params.has("operation"))
{
String operation = params.get<String>("operation").toLowerCase();
if (operation == "prod")
op = EltwiseLayer::PROD;
else if (operation == "sum")
op = EltwiseLayer::SUM;
else if (operation == "max")
op = EltwiseLayer::MAX;
else
CV_Error(cv::Error::StsBadArg, "Unknown operaticon type \"" + operation + "\"");
}
std::vector<int> coeffs;
if (params.has("coeff"))
{
DictValue paramCoeff = params.get("coeff");
coeffs.resize(paramCoeff.size(), 1);
for (int i = 0; i < paramCoeff.size(); i++)
{
coeffs[i] = paramCoeff.get<int>(i);
}
}
return Ptr<Layer>(EltwiseLayer::create(op, coeffs));
}
示例2: getParameterDict
bool getParameterDict(const LayerParams ¶ms,
const std::string ¶meterName,
DictValue& result)
{
if (!params.has(parameterName))
{
return false;
}
result = params.get(parameterName);
return true;
}
示例3: ReshapeLayerImpl
ReshapeLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
int axis = params.get<int>("axis", 0);
int numAxes = params.get<int>("num_axes", -1);
CV_Assert(numAxes >= -1);
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes);
newShapeDesc.clear();
if (params.has("dim"))
{
const DictValue ¶mShape = params.get("dim");
int i, dims = paramShape.size();
newShapeDesc.resize(dims);
for (i = 0; i < dims; i++)
newShapeDesc[i] = paramShape.get<int>(i);
}
}
示例4: sliceIndices
Ptr<Layer> createLayerFromCaffe<SliceLayer>(LayerParams& params)
{
int axis = params.get<int>("axis", 1);
if (!params.has("slice_point"))
{
return Ptr<Layer>(SliceLayer::create(axis));
}
else
{
const DictValue &indicesValue = params.get("slice_point");
std::vector<int> sliceIndices(indicesValue.size());
for (int i = 0; i < indicesValue.size(); i++)
sliceIndices[i] = indicesValue.get<int>(i);
return Ptr<Layer>(SliceLayer::create(axis, sliceIndices));
}
}
示例5: PaddingLayerImpl
PaddingLayerImpl(const LayerParams ¶ms)
{
setParamsFrom(params);
paddingValue = params.get<float>("value", 0);
inputDims = params.get<int>("input_dims", -1);
paddingType = params.get<String>("type", "constant");
CV_Assert(params.has("paddings"));
const DictValue& paddingsParam = params.get("paddings");
CV_Assert((paddingsParam.size() & 1) == 0);
paddings.resize(paddingsParam.size() / 2);
for (int i = 0; i < paddings.size(); ++i)
{
paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before.
paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after.
CV_Assert(paddings[i].first >= 0, paddings[i].second >= 0);
}
}
示例6: PriorBoxLayerImpl
PriorBoxLayerImpl(const LayerParams ¶ms)
{
setParamsFrom(params);
_minSize = getParameter<unsigned>(params, "min_size");
CV_Assert(_minSize > 0);
_flip = getParameter<bool>(params, "flip");
_clip = getParameter<bool>(params, "clip");
_aspectRatios.clear();
_aspectRatios.push_back(1.);
getAspectRatios(params);
getVariance(params);
_numPriors = _aspectRatios.size();
_maxSize = -1;
if (params.has("max_size"))
{
_maxSize = params.get("max_size").get<float>(0);
CV_Assert(_maxSize > _minSize);
_numPriors += 1;
}
if (params.has("step_h") || params.has("step_w")) {
CV_Assert(!params.has("step"));
_stepY = getParameter<float>(params, "step_h");
CV_Assert(_stepY > 0.);
_stepX = getParameter<float>(params, "step_w");
CV_Assert(_stepX > 0.);
} else if (params.has("step")) {
const float step = getParameter<float>(params, "step");
CV_Assert(step > 0);
_stepY = step;
_stepX = step;
} else {
_stepY = 0;
_stepX = 0;
}
}
示例7: Range
Ptr<Layer> createLayerFromCaffe<ReshapeLayer>(LayerParams ¶ms)
{
int axis = params.get<int>("axis", 0);
int numAxes = params.get<int>("num_axes", -1);
bool enableReordering = params.get<bool>("reorder_dims", false);
CV_Assert(numAxes >= -1);
Range applyingRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes);
Shape newShape;
if (params.has("dim"))
{
const DictValue ¶mShape = params.get("dim");
newShape = Shape::all(paramShape.size());
for (int i = 0; i < paramShape.size(); i++)
newShape[i] = paramShape.get<int>(i);
}
else
newShape = Shape::all(0);
return Ptr<Layer>(ReshapeLayer::create(newShape, applyingRange, enableReordering));
}
示例8: PriorBoxLayerImpl
PriorBoxLayerImpl(const LayerParams ¶ms)
: _boxWidth(0), _boxHeight(0)
{
setParamsFrom(params);
_minSize = getParameter<float>(params, "min_size", 0, false, 0);
_flip = getParameter<bool>(params, "flip", 0, false, true);
_clip = getParameter<bool>(params, "clip", 0, false, true);
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
_scales.clear();
_aspectRatios.clear();
getAspectRatios(params);
getVariance(params);
getParams("scales", params, &_scales);
getParams("width", params, &_widths);
getParams("height", params, &_heights);
_explicitSizes = !_widths.empty();
CV_Assert(_widths.size() == _heights.size());
if (_explicitSizes)
{
CV_Assert(_aspectRatios.empty(), !params.has("min_size"), !params.has("max_size"));
_numPriors = _widths.size();
}
else
{
CV_Assert(!_aspectRatios.empty(), _minSize > 0);
_numPriors = _aspectRatios.size() + 1; // + 1 for an aspect ratio 1.0
}
_maxSize = -1;
if (params.has("max_size"))
{
_maxSize = params.get("max_size").get<float>(0);
CV_Assert(_maxSize > _minSize);
_numPriors += 1;
}
if (params.has("step_h") || params.has("step_w")) {
CV_Assert(!params.has("step"));
_stepY = getParameter<float>(params, "step_h");
CV_Assert(_stepY > 0.);
_stepX = getParameter<float>(params, "step_w");
CV_Assert(_stepX > 0.);
} else if (params.has("step")) {
const float step = getParameter<float>(params, "step");
CV_Assert(step > 0);
_stepY = step;
_stepX = step;
} else {
_stepY = 0;
_stepX = 0;
}
if (params.has("offset_h") || params.has("offset_w"))
{
CV_Assert(!params.has("offset"), params.has("offset_h"), params.has("offset_w"));
getParams("offset_h", params, &_offsetsY);
getParams("offset_w", params, &_offsetsX);
CV_Assert(_offsetsX.size() == _offsetsY.size());
_numPriors *= std::max((size_t)1, 2 * (_offsetsX.size() - 1));
}
else
{
float offset = getParameter<float>(params, "offset", 0, false, 0.5);
_offsetsX.assign(1, offset);
_offsetsY.assign(1, offset);
}
}
示例9: populateNet
void ONNXImporter::populateNet(Net dstNet)
{
CV_Assert(model_proto.has_graph());
opencv_onnx::GraphProto graph_proto = model_proto.graph();
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
// List of internal blobs shapes.
std::map<std::string, MatShape> outShapes;
// Add all the inputs shapes. It includes as constant blobs as network's inputs shapes.
for (int i = 0; i < graph_proto.input_size(); ++i)
{
opencv_onnx::ValueInfoProto valueInfoProto = graph_proto.input(i);
CV_Assert(valueInfoProto.has_type());
opencv_onnx::TypeProto typeProto = valueInfoProto.type();
CV_Assert(typeProto.has_tensor_type());
opencv_onnx::TypeProto::Tensor tensor = typeProto.tensor_type();
CV_Assert(tensor.has_shape());
opencv_onnx::TensorShapeProto tensorShape = tensor.shape();
MatShape inpShape(tensorShape.dim_size());
for (int j = 0; j < inpShape.size(); ++j)
{
inpShape[j] = tensorShape.dim(j).dim_value();
}
outShapes[valueInfoProto.name()] = inpShape;
}
std::string framework_name;
if (model_proto.has_producer_name()) {
framework_name = model_proto.producer_name();
}
// create map with network inputs (without const blobs)
std::map<std::string, LayerInfo> layer_id;
std::map<std::string, LayerInfo>::iterator layerId;
std::map<std::string, MatShape>::iterator shapeIt;
// fill map: push layer name, layer id and output id
std::vector<String> netInputs;
for (int j = 0; j < graph_proto.input_size(); j++)
{
const std::string& name = graph_proto.input(j).name();
if (constBlobs.find(name) == constBlobs.end()) {
netInputs.push_back(name);
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1)));
}
}
dstNet.setInputsNames(netInputs);
int layersSize = graph_proto.node_size();
LayerParams layerParams;
opencv_onnx::NodeProto node_proto;
for(int li = 0; li < layersSize; li++)
{
node_proto = graph_proto.node(li);
layerParams = getLayerParams(node_proto);
CV_Assert(node_proto.output_size() >= 1);
layerParams.name = node_proto.output(0);
std::string layer_type = node_proto.op_type();
layerParams.type = layer_type;
if (layer_type == "MaxPool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "MAX");
layerParams.set("ceil_mode", isCeilMode(layerParams));
}
else if (layer_type == "AveragePool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
layerParams.set("ceil_mode", isCeilMode(layerParams));
layerParams.set("ave_pool_padded_area", framework_name == "pytorch");
}
else if (layer_type == "GlobalAveragePool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
layerParams.set("global_pooling", true);
}
else if (layer_type == "Add" || layer_type == "Sum")
{
if (layer_id.find(node_proto.input(1)) == layer_id.end())
{
Mat blob = getBlob(node_proto, constBlobs, 1);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
layerParams.type = "Power";
layerParams.set("shift", blob.at<float>(0));
}
else {
layerParams.type = "Scale";
layerParams.set("bias_term", true);
layerParams.blobs.push_back(blob);
}
}
else {
layerParams.type = "Eltwise";
}
//.........这里部分代码省略.........
示例10: PriorBoxLayerImpl
PriorBoxLayerImpl(const LayerParams ¶ms)
{
setParamsFrom(params);
_minSize = getParameter<float>(params, "min_size", 0, false, 0);
_flip = getParameter<bool>(params, "flip", 0, false, true);
_clip = getParameter<bool>(params, "clip", 0, false, true);
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
_aspectRatios.clear();
getAspectRatios(params);
getVariance(params);
_maxSize = -1;
if (params.has("max_size"))
{
_maxSize = params.get("max_size").get<float>(0);
CV_Assert(_maxSize > _minSize);
}
std::vector<float> widths, heights;
getParams("width", params, &widths);
getParams("height", params, &heights);
_explicitSizes = !widths.empty();
CV_Assert(widths.size() == heights.size());
if (_explicitSizes)
{
CV_Assert(_aspectRatios.empty());
CV_Assert(!params.has("min_size"));
CV_Assert(!params.has("max_size"));
_boxWidths = widths;
_boxHeights = heights;
}
else
{
CV_Assert(_minSize > 0);
_boxWidths.resize(1 + (_maxSize > 0 ? 1 : 0) + _aspectRatios.size());
_boxHeights.resize(_boxWidths.size());
_boxWidths[0] = _boxHeights[0] = _minSize;
int i = 1;
if (_maxSize > 0)
{
// second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
_boxWidths[i] = _boxHeights[i] = sqrt(_minSize * _maxSize);
i += 1;
}
// rest of priors
for (size_t r = 0; r < _aspectRatios.size(); ++r)
{
float arSqrt = sqrt(_aspectRatios[r]);
_boxWidths[i + r] = _minSize * arSqrt;
_boxHeights[i + r] = _minSize / arSqrt;
}
}
CV_Assert(_boxWidths.size() == _boxHeights.size());
_numPriors = _boxWidths.size();
if (params.has("step_h") || params.has("step_w")) {
CV_Assert(!params.has("step"));
_stepY = getParameter<float>(params, "step_h");
CV_Assert(_stepY > 0.);
_stepX = getParameter<float>(params, "step_w");
CV_Assert(_stepX > 0.);
} else if (params.has("step")) {
const float step = getParameter<float>(params, "step");
CV_Assert(step > 0);
_stepY = step;
_stepX = step;
} else {
_stepY = 0;
_stepX = 0;
}
if (params.has("offset_h") || params.has("offset_w"))
{
CV_Assert(!params.has("offset"), params.has("offset_h"), params.has("offset_w"));
getParams("offset_h", params, &_offsetsY);
getParams("offset_w", params, &_offsetsX);
CV_Assert(_offsetsX.size() == _offsetsY.size());
_numPriors *= std::max((size_t)1, 2 * (_offsetsX.size() - 1));
}
else
{
float offset = getParameter<float>(params, "offset", 0, false, 0.5);
_offsetsX.assign(1, offset);
_offsetsY.assign(1, offset);
}
}