当前位置: 首页>>代码示例>>C++>>正文


C++ LargeBlockInfo::getInstructionIndex方法代码示例

本文整理汇总了C++中LargeBlockInfo::getInstructionIndex方法的典型用法代码示例。如果您正苦于以下问题:C++ LargeBlockInfo::getInstructionIndex方法的具体用法?C++ LargeBlockInfo::getInstructionIndex怎么用?C++ LargeBlockInfo::getInstructionIndex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在LargeBlockInfo的用法示例。


在下文中一共展示了LargeBlockInfo::getInstructionIndex方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assert

/// RewriteSingleStoreAlloca - If there is only a single store to this value,
/// replace any loads of it that are directly dominated by the definition with
/// the value stored.
void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
                                              AllocaInfo &Info,
                                              LargeBlockInfo &LBI) {
  StoreInst *OnlyStore = Info.OnlyStore;
  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
  BasicBlock *StoreBB = OnlyStore->getParent();
  int StoreIndex = -1;

  // Clear out UsingBlocks.  We will reconstruct it here if needed.
  Info.UsingBlocks.clear();
  
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
    Instruction *UserInst = cast<Instruction>(*UI++);
    if (!isa<LoadInst>(UserInst)) {
      assert(UserInst == OnlyStore && "Should only have load/stores");
      continue;
    }
    LoadInst *LI = cast<LoadInst>(UserInst);
    
    // Okay, if we have a load from the alloca, we want to replace it with the
    // only value stored to the alloca.  We can do this if the value is
    // dominated by the store.  If not, we use the rest of the mem2reg machinery
    // to insert the phi nodes as needed.
    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
      if (LI->getParent() == StoreBB) {
        // If we have a use that is in the same block as the store, compare the
        // indices of the two instructions to see which one came first.  If the
        // load came before the store, we can't handle it.
        if (StoreIndex == -1)
          StoreIndex = LBI.getInstructionIndex(OnlyStore);

        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
          // Can't handle this load, bail out.
          Info.UsingBlocks.push_back(StoreBB);
          continue;
        }
        
      } else if (LI->getParent() != StoreBB &&
                 !dominates(StoreBB, LI->getParent())) {
        // If the load and store are in different blocks, use BB dominance to
        // check their relationships.  If the store doesn't dom the use, bail
        // out.
        Info.UsingBlocks.push_back(LI->getParent());
        continue;
      }
    }
    
    // Otherwise, we *can* safely rewrite this load.
    Value *ReplVal = OnlyStore->getOperand(0);
    // If the replacement value is the load, this must occur in unreachable
    // code.
    if (ReplVal == LI)
      ReplVal = UndefValue::get(LI->getType());
    LI->replaceAllUsesWith(ReplVal);
    if (AST && LI->getType()->isPointerTy())
      AST->deleteValue(LI);
    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }
}
开发者ID:AHelper,项目名称:llvm-z80-target,代码行数:63,代码来源:PromoteMemoryToRegister.cpp

示例2: StoreIndexSearchPredicate

/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
/// potentially useless PHI nodes by just performing a single linear pass over
/// the basic block using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return true.  This is necessary in cases where, due to control flow, the
/// alloca is potentially undefined on some control flow paths.  e.g. code like
/// this is potentially correct:
///
///   for (...) { if (c) { A = undef; undef = B; } }
///
/// ... so long as A is not used before undef is set.
///
void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
                                              LargeBlockInfo &LBI) {
  // The trickiest case to handle is when we have large blocks. Because of this,
  // this code is optimized assuming that large blocks happen.  This does not
  // significantly pessimize the small block case.  This uses LargeBlockInfo to
  // make it efficient to get the index of various operations in the block.
  
  // Clear out UsingBlocks.  We will reconstruct it here if needed.
  Info.UsingBlocks.clear();
  
  // Walk the use-def list of the alloca, getting the locations of all stores.
  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
  StoresByIndexTy StoresByIndex;
  
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
       UI != E; ++UI) 
    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));

  // If there are no stores to the alloca, just replace any loads with undef.
  if (StoresByIndex.empty()) {
    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) 
      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
        if (AST && LI->getType()->isPointerTy())
          AST->deleteValue(LI);
        LBI.deleteValue(LI);
        LI->eraseFromParent();
      }
    return;
  }
  
  // Sort the stores by their index, making it efficient to do a lookup with a
  // binary search.
  std::sort(StoresByIndex.begin(), StoresByIndex.end());
  
  // Walk all of the loads from this alloca, replacing them with the nearest
  // store above them, if any.
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    if (!LI) continue;
    
    unsigned LoadIdx = LBI.getInstructionIndex(LI);
    
    // Find the nearest store that has a lower than this load. 
    StoresByIndexTy::iterator I = 
      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
                       std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
                       StoreIndexSearchPredicate());
    
    // If there is no store before this load, then we can't promote this load.
    if (I == StoresByIndex.begin()) {
      // Can't handle this load, bail out.
      Info.UsingBlocks.push_back(LI->getParent());
      continue;
    }
      
    // Otherwise, there was a store before this load, the load takes its value.
    --I;
    LI->replaceAllUsesWith(I->second->getOperand(0));
    if (AST && LI->getType()->isPointerTy())
      AST->deleteValue(LI);
    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }
}
开发者ID:AHelper,项目名称:llvm-z80-target,代码行数:80,代码来源:PromoteMemoryToRegister.cpp

示例3: promoteSingleBlockAlloca

/// Many allocas are only used within a single basic block.  If this is the
/// case, avoid traversing the CFG and inserting a lot of potentially useless
/// PHI nodes by just performing a single linear pass over the basic block
/// using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return true.  This is necessary in cases where, due to control flow, the
/// alloca is potentially undefined on some control flow paths.  e.g. code like
/// this is potentially correct:
///
///   for (...) { if (c) { A = undef; undef = B; } }
///
/// ... so long as A is not used before undef is set.
static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
                                     LargeBlockInfo &LBI,
                                     AliasSetTracker *AST) {
  // The trickiest case to handle is when we have large blocks. Because of this,
  // this code is optimized assuming that large blocks happen.  This does not
  // significantly pessimize the small block case.  This uses LargeBlockInfo to
  // make it efficient to get the index of various operations in the block.

  // Walk the use-def list of the alloca, getting the locations of all stores.
  typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
  StoresByIndexTy StoresByIndex;

  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;
       ++UI)
    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));

  // Sort the stores by their index, making it efficient to do a lookup with a
  // binary search.
  std::sort(StoresByIndex.begin(), StoresByIndex.end(),
            StoreIndexSearchPredicate());

  // Walk all of the loads from this alloca, replacing them with the nearest
  // store above them, if any.
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    if (!LI)
      continue;

    unsigned LoadIdx = LBI.getInstructionIndex(LI);

    // Find the nearest store that has a lower index than this load.
    StoresByIndexTy::iterator I =
        std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
                         std::make_pair(LoadIdx, static_cast<StoreInst *>(0)),
                         StoreIndexSearchPredicate());

    if (I == StoresByIndex.begin())
      // If there is no store before this load, the load takes the undef value.
      LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    else
      // Otherwise, there was a store before this load, the load takes its value.
      LI->replaceAllUsesWith(llvm::prior(I)->second->getOperand(0));

    if (AST && LI->getType()->isPointerTy())
      AST->deleteValue(LI);
    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Remove the (now dead) stores and alloca.
  while (!AI->use_empty()) {
    StoreInst *SI = cast<StoreInst>(AI->use_back());
    // Record debuginfo for the store before removing it.
    if (DbgDeclareInst *DDI = Info.DbgDeclare) {
      DIBuilder DIB(*AI->getParent()->getParent()->getParent());
      ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    }
    SI->eraseFromParent();
    LBI.deleteValue(SI);
  }

  if (AST)
    AST->deleteValue(AI);
  AI->eraseFromParent();
  LBI.deleteValue(AI);

  // The alloca's debuginfo can be removed as well.
  if (DbgDeclareInst *DDI = Info.DbgDeclare)
    DDI->eraseFromParent();

  ++NumLocalPromoted;
}
开发者ID:xatier,项目名称:llvm,代码行数:86,代码来源:PromoteMemoryToRegister.cpp

示例4: rewriteSingleStoreAlloca

/// \brief Rewrite as many loads as possible given a single store.
///
/// When there is only a single store, we can use the domtree to trivially
/// replace all of the dominated loads with the stored value. Do so, and return
/// true if this has successfully promoted the alloca entirely. If this returns
/// false there were some loads which were not dominated by the single store
/// and thus must be phi-ed with undef. We fall back to the standard alloca
/// promotion algorithm in that case.
static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
                                     LargeBlockInfo &LBI,
                                     DominatorTree &DT,
                                     AliasSetTracker *AST) {
  StoreInst *OnlyStore = Info.OnlyStore;
  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
  BasicBlock *StoreBB = OnlyStore->getParent();
  int StoreIndex = -1;

  // Clear out UsingBlocks.  We will reconstruct it here if needed.
  Info.UsingBlocks.clear();

  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    Instruction *UserInst = cast<Instruction>(*UI++);
    if (!isa<LoadInst>(UserInst)) {
      assert(UserInst == OnlyStore && "Should only have load/stores");
      continue;
    }
    LoadInst *LI = cast<LoadInst>(UserInst);

    // Okay, if we have a load from the alloca, we want to replace it with the
    // only value stored to the alloca.  We can do this if the value is
    // dominated by the store.  If not, we use the rest of the mem2reg machinery
    // to insert the phi nodes as needed.
    if (!StoringGlobalVal) { // Non-instructions are always dominated.
      if (LI->getParent() == StoreBB) {
        // If we have a use that is in the same block as the store, compare the
        // indices of the two instructions to see which one came first.  If the
        // load came before the store, we can't handle it.
        if (StoreIndex == -1)
          StoreIndex = LBI.getInstructionIndex(OnlyStore);

        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
          // Can't handle this load, bail out.
          Info.UsingBlocks.push_back(StoreBB);
          continue;
        }

      } else if (LI->getParent() != StoreBB &&
                 !DT.dominates(StoreBB, LI->getParent())) {
        // If the load and store are in different blocks, use BB dominance to
        // check their relationships.  If the store doesn't dom the use, bail
        // out.
        Info.UsingBlocks.push_back(LI->getParent());
        continue;
      }
    }

    // Otherwise, we *can* safely rewrite this load.
    Value *ReplVal = OnlyStore->getOperand(0);
    // If the replacement value is the load, this must occur in unreachable
    // code.
    if (ReplVal == LI)
      ReplVal = UndefValue::get(LI->getType());
    LI->replaceAllUsesWith(ReplVal);
    if (AST && LI->getType()->isPointerTy())
      AST->deleteValue(LI);
    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Finally, after the scan, check to see if the store is all that is left.
  if (!Info.UsingBlocks.empty())
    return false; // If not, we'll have to fall back for the remainder.

  // Record debuginfo for the store and remove the declaration's
  // debuginfo.
  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    DIBuilder DIB(*AI->getParent()->getParent()->getParent());
    ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
    DDI->eraseFromParent();
  }
  // Remove the (now dead) store and alloca.
  Info.OnlyStore->eraseFromParent();
  LBI.deleteValue(Info.OnlyStore);

  if (AST)
    AST->deleteValue(AI);
  AI->eraseFromParent();
  LBI.deleteValue(AI);
  return true;
}
开发者ID:xatier,项目名称:llvm,代码行数:90,代码来源:PromoteMemoryToRegister.cpp

示例5: promoteSingleBlockAlloca

/// Many allocas are only used within a single basic block.  If this is the
/// case, avoid traversing the CFG and inserting a lot of potentially useless
/// PHI nodes by just performing a single linear pass over the basic block
/// using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return false.  This is necessary in cases where, due to control flow, the
/// alloca is undefined only on some control flow paths.  e.g. code like
/// this is correct in LLVM IR:
///  // A is an alloca with no stores so far
///  for (...) {
///    int t = *A;
///    if (!first_iteration)
///      use(t);
///    *A = 42;
///  }
static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
                                     LargeBlockInfo &LBI,
                                     const DataLayout &DL,
                                     DominatorTree &DT,
                                     AssumptionCache *AC) {
  // The trickiest case to handle is when we have large blocks. Because of this,
  // this code is optimized assuming that large blocks happen.  This does not
  // significantly pessimize the small block case.  This uses LargeBlockInfo to
  // make it efficient to get the index of various operations in the block.

  // Walk the use-def list of the alloca, getting the locations of all stores.
  using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
  StoresByIndexTy StoresByIndex;

  for (User *U : AI->users())
    if (StoreInst *SI = dyn_cast<StoreInst>(U))
      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));

  // Sort the stores by their index, making it efficient to do a lookup with a
  // binary search.
  llvm::sort(StoresByIndex, less_first());

  // Walk all of the loads from this alloca, replacing them with the nearest
  // store above them, if any.
  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    if (!LI)
      continue;

    unsigned LoadIdx = LBI.getInstructionIndex(LI);

    // Find the nearest store that has a lower index than this load.
    StoresByIndexTy::iterator I =
        std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
                         std::make_pair(LoadIdx,
                                        static_cast<StoreInst *>(nullptr)),
                         less_first());
    if (I == StoresByIndex.begin()) {
      if (StoresByIndex.empty())
        // If there are no stores, the load takes the undef value.
        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
      else
        // There is no store before this load, bail out (load may be affected
        // by the following stores - see main comment).
        return false;
    } else {
      // Otherwise, there was a store before this load, the load takes its value.
      // Note, if the load was marked as nonnull we don't want to lose that
      // information when we erase it. So we preserve it with an assume.
      Value *ReplVal = std::prev(I)->second->getOperand(0);
      if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
          !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
        addAssumeNonNull(AC, LI);

      // If the replacement value is the load, this must occur in unreachable
      // code.
      if (ReplVal == LI)
        ReplVal = UndefValue::get(LI->getType());

      LI->replaceAllUsesWith(ReplVal);
    }

    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Remove the (now dead) stores and alloca.
  while (!AI->use_empty()) {
    StoreInst *SI = cast<StoreInst>(AI->user_back());
    // Record debuginfo for the store before removing it.
    for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
      DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
      ConvertDebugDeclareToDebugValue(DII, SI, DIB);
    }
    SI->eraseFromParent();
    LBI.deleteValue(SI);
  }

  AI->eraseFromParent();
  LBI.deleteValue(AI);

  // The alloca's debuginfo can be removed as well.
  for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
    DII->eraseFromParent();
//.........这里部分代码省略.........
开发者ID:jamboree,项目名称:llvm,代码行数:101,代码来源:PromoteMemoryToRegister.cpp

示例6: rewriteSingleStoreAlloca

/// Rewrite as many loads as possible given a single store.
///
/// When there is only a single store, we can use the domtree to trivially
/// replace all of the dominated loads with the stored value. Do so, and return
/// true if this has successfully promoted the alloca entirely. If this returns
/// false there were some loads which were not dominated by the single store
/// and thus must be phi-ed with undef. We fall back to the standard alloca
/// promotion algorithm in that case.
static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
                                     LargeBlockInfo &LBI, const DataLayout &DL,
                                     DominatorTree &DT, AssumptionCache *AC) {
  StoreInst *OnlyStore = Info.OnlyStore;
  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
  BasicBlock *StoreBB = OnlyStore->getParent();
  int StoreIndex = -1;

  // Clear out UsingBlocks.  We will reconstruct it here if needed.
  Info.UsingBlocks.clear();

  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    Instruction *UserInst = cast<Instruction>(*UI++);
    if (!isa<LoadInst>(UserInst)) {
      assert(UserInst == OnlyStore && "Should only have load/stores");
      continue;
    }
    LoadInst *LI = cast<LoadInst>(UserInst);

    // Okay, if we have a load from the alloca, we want to replace it with the
    // only value stored to the alloca.  We can do this if the value is
    // dominated by the store.  If not, we use the rest of the mem2reg machinery
    // to insert the phi nodes as needed.
    if (!StoringGlobalVal) { // Non-instructions are always dominated.
      if (LI->getParent() == StoreBB) {
        // If we have a use that is in the same block as the store, compare the
        // indices of the two instructions to see which one came first.  If the
        // load came before the store, we can't handle it.
        if (StoreIndex == -1)
          StoreIndex = LBI.getInstructionIndex(OnlyStore);

        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
          // Can't handle this load, bail out.
          Info.UsingBlocks.push_back(StoreBB);
          continue;
        }
      } else if (LI->getParent() != StoreBB &&
                 !DT.dominates(StoreBB, LI->getParent())) {
        // If the load and store are in different blocks, use BB dominance to
        // check their relationships.  If the store doesn't dom the use, bail
        // out.
        Info.UsingBlocks.push_back(LI->getParent());
        continue;
      }
    }

    // Otherwise, we *can* safely rewrite this load.
    Value *ReplVal = OnlyStore->getOperand(0);
    // If the replacement value is the load, this must occur in unreachable
    // code.
    if (ReplVal == LI)
      ReplVal = UndefValue::get(LI->getType());

    // If the load was marked as nonnull we don't want to lose
    // that information when we erase this Load. So we preserve
    // it with an assume.
    if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
        !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
      addAssumeNonNull(AC, LI);

    LI->replaceAllUsesWith(ReplVal);
    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Finally, after the scan, check to see if the store is all that is left.
  if (!Info.UsingBlocks.empty())
    return false; // If not, we'll have to fall back for the remainder.

  // Record debuginfo for the store and remove the declaration's
  // debuginfo.
  for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
    DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
    ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
    DII->eraseFromParent();
    LBI.deleteValue(DII);
  }
  // Remove the (now dead) store and alloca.
  Info.OnlyStore->eraseFromParent();
  LBI.deleteValue(Info.OnlyStore);

  AI->eraseFromParent();
  LBI.deleteValue(AI);
  return true;
}
开发者ID:jamboree,项目名称:llvm,代码行数:93,代码来源:PromoteMemoryToRegister.cpp


注:本文中的LargeBlockInfo::getInstructionIndex方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。