本文整理汇总了C++中IntervalVector::ub方法的典型用法代码示例。如果您正苦于以下问题:C++ IntervalVector::ub方法的具体用法?C++ IntervalVector::ub怎么用?C++ IntervalVector::ub使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类IntervalVector
的用法示例。
在下文中一共展示了IntervalVector::ub方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: centeredFormEval
Interval centeredFormEval(const Function& function, const IntervalVector& arg) {
/*Interval natural_extension = function.eval(arg);
Interval centered_form = function.eval(arg.mid()) + function.gradient(arg) * (arg - arg.mid());*/
IntervalVector new_arg_ub(arg);
IntervalVector new_arg_lb(arg);
IntervalVector grad = function.gradient(arg);
for(int i = 0; i < arg.size(); ++i) {
if(grad[i].lb() > 0) {
new_arg_ub[i] = arg[i].ub();
new_arg_lb[i] = arg[i].lb();
} else if(grad[i].ub() < 0) {
new_arg_ub[i] = arg[i].lb();
new_arg_lb[i] = arg[i].ub();
}
}
Interval natural_extension = function.eval(arg);
Interval centered_form = function.eval(arg.mid()) + grad * (arg - arg.mid());
Interval ub_form = function.eval(arg.ub()) + grad * (arg - arg.ub());
Interval lb_form = function.eval(arg.lb()) + grad * (arg - arg.lb());
Interval res = natural_extension & centered_form & ub_form & lb_form;
res &= Interval(function.eval(new_arg_lb).lb(), function.eval(new_arg_ub).ub());
return res;
}
示例2: hansen_bliek
void hansen_bliek(const IntervalMatrix& A, const IntervalVector& B, IntervalVector& x) {
int n=A.nb_rows();
assert(n == A.nb_cols()); // throw NotSquareMatrixException();
assert(n == x.size() && n == B.size());
Matrix Id(n,n);
for (int i=0; i<n; i++)
for (int j=0; j<n; j++) {
Id[i][j] = i==j;
}
IntervalMatrix radA(A-Id);
Matrix InfA(Id-abs(radA.lb()));
Matrix M(n,n);
real_inverse(InfA, M); // may throw SingularMatrixException...
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
if (! (M[i][j]>=0.0)) throw NotInversePositiveMatrixException();
Vector b(B.mid());
Vector delta = (B.ub())-b;
Vector xstar = M * (abs(b)+delta);
double xtildek, xutildek, nuk, max, min;
for (int k=0; k<n; k++) {
xtildek = (b[k]>=0) ? xstar[k] : xstar[k] + 2*M[k][k]*b[k];
xutildek = (b[k]<=0) ? -xstar[k] : -xstar[k] + 2*M[k][k]*b[k];
nuk = 1/(2*M[k][k]-1);
max = nuk*xutildek;
if (max < 0) max = 0;
min = nuk*xtildek;
if (min > 0) min = 0;
/* compute bounds of x(k) */
if (xtildek >= max) {
if (xutildek <= min) x[k] = Interval(xutildek,xtildek);
else x[k] = Interval(max,xtildek);
} else {
if (xutildek <= min) x[k] = Interval(xutildek,min);
else { x.set_empty(); return; }
}
}
}