本文整理汇总了C++中InterthreadQueue类的典型用法代码示例。如果您正苦于以下问题:C++ InterthreadQueue类的具体用法?C++ InterthreadQueue怎么用?C++ InterthreadQueue使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了InterthreadQueue类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mRunning
namespace GSM {
static int sMaxAge; ///< Maximum allowed age of RACH in frames, a constant computed from config options.
CCCHLogicalChannel::CCCHLogicalChannel(unsigned wCcchGroup, const TDMAMapping& wMapping)
:mCcchGroup(wCcchGroup), mRunning(false)
{
unsigned TN = wCcchGroup * 2; // *2 to convert from CCCH_GROUP
this->mL1 = new CCCHL1FEC(wMapping,TN);
this->connect(this->mL1);
}
static void *CCCHLogicalChannelServiceLoopAdapter(CCCHLogicalChannel* chan)
{
chan->ccchServiceLoop();
return NULL;
}
void CCCHLogicalChannel::ccchOpen()
{
L2LogicalChannelBase::startl1();
if (!mRunning) {
mRunning=true;
mServiceThread.start((void*(*)(void*))CCCHLogicalChannelServiceLoopAdapter,this);
}
}
// This is a specialized thread-safe queue to be used only for the paging and related queues.
// The writer thread(s) can only write to the end of the queue.
// The single reader thread can do a protected iteration using a single captive iterator in the class.
// It does not support blocking wait so it is much simpler than InterthreadQueue.
template <class ETP> // Entry Type, which is a Pointer.
class IterableQueue {
typedef typename std::list<ETP>::iterator itr_t;
Mutex miqLock;
std::list<ETP> miqList;
typename std::list<ETP>::iterator miqIterator;
ETP iqResult() { return miqIterator == miqList.end() ? NULL : *miqIterator; }
public:
int *miqLoadPointer; // If the descendent class sets this, it will be maintained with the number of elements in the queue.
IterableQueue() : miqLoadPointer(NULL) {}
void push_back(ETP elt) {
ScopedLock lock(miqLock);
miqList.push_back(elt);
if (miqLoadPointer) (*miqLoadPointer)++;
}
//ETP pop_frontr() {
// ScopedLock lock(miqLock);
// if (miqList.empty()) { return 0; } // Hopefully 0 has some distinct meaning for type ET.
// ETP result = miqList.front();
// miqList.pop_front();
// if (miqLoadPointer) (*miqLoadPointer)++;
// return result;
//}
ETP itBegin() {
ScopedLock lock(miqLock);
miqIterator = miqList.begin();
return iqResult();
}
// It is the caller's responsibility to delete the element, or enqueue it elsewhere.
ETP itRemove(ETP thisone) { // The argument is redundant but helps check compliance with list semantics.
LOG(DEBUG);
ScopedLock lock(miqLock);
assert(*miqIterator == thisone);
miqIterator = miqList.erase(miqIterator);
if (miqLoadPointer) (*miqLoadPointer)--;
return iqResult();
}
ETP itSkip(ETP thisone) { // The argument is redundant but helps check compliance with list semantics.
ScopedLock lock(miqLock);
assert(*miqIterator == thisone);
miqIterator++;
return iqResult();
}
int getSize() {
ScopedLock lock(miqLock);
return miqList.size();
}
};
class PagingQ {
public:
InterthreadQueue<NewPagingEntry> mPageQ;
void addPage(NewPagingEntry *npe) { mPageQ.write(npe); }
unsigned getPagingLoad() { return mPageQ.size(); }
} gPagingQ;
// Global linkage:
int getPCHLoad() {
return gPagingQ.getPagingLoad();
}
//.........这里部分代码省略.........
示例2: qWriter
void* qWriter(void*)
{
int *p;
for (int i=0; i<20; i++) {
p = new int;
*p = i;
COUT("queue write " << *p);
gQ.write(p);
if (random()%2) sleep(1);
}
p = new int;
*p = -1;
gQ.write(p);
return NULL;
}
示例3: qReader
void* qReader(void*)
{
bool done = false;
while (!done) {
int *p = gQ.read();
COUT("queue read " << *p);
if (*p<0) done=true;
delete p;
}
return NULL;
}
示例4: enqueueRach
void enqueueRach(RachInfo *rip)
{
// TODO: Phones next to the base station will include the operator's.
// We should service them first, even if they are just LUR.
// This is too chatty.
//LOG(INFO) << "**Incoming Burst**"<<LOGVAR(lur)<<LOGVAR(gprs)
//<<LOGVAR(when)<<LOGVAR(age)<<LOGVAR2("TE",timingError)<<LOGVAR(RSSI)<<LOGHEX(RA);
bool deleteMe = false;
preallocateChForRach(rip,&deleteMe);
if (deleteMe) {
delete rip;
return;
}
gRachq.write(rip);
}
示例5: processRaches
// Return true if the CCCH frame was used.
bool CCCHLogicalChannel::processRaches()
{
while (RachInfo *rach = gRachq.readNoBlock())
{
Time now = gBTS.time();
int age = now - rach->mWhen; // The result is number of frames and could be negative.
if (age>sMaxAge) {
LOG(WARNING) << "ignoring RACH burst with age " << age;
if (rach->mChan) {
LOG(INFO) << "BTS congestion: unable to process RACH for pre-allocated channel within expiration time";
rach->mChan->l2sendp(L3_HARDRELEASE_REQUEST); // (pat) added 9-6-2013
}
delete rach;
continue; // Did not use the CCCH frame yet.
}
ChannelType chtype = decodeChannelNeeded(rach->mRA);
LOG(DEBUG) <<LOGVAR(*rach) <<LOGVAR(chtype) <<LOGVAR(mCcchGroup);
if (chtype == PSingleBlock1PhaseType || chtype == PSingleBlock2PhaseType) {
assert(rach->mChan == NULL);
if (0 == gConfig.getNum("GPRS.Enable")) {
// GPRS service request when the beacon advertises no beacon support.
// This was a spurious RACH message or a stupid handset. Ignore it.
assert(rach->mChan == NULL);
delete rach;
continue;
}
// Regardless of the type of GPRS request, we will send a single-block uplink,
// which the MS will (most likely) use to send us a PacketResourceRequest.
// First request a single-block reservation from GPRS. If GPRS resources are busy,
// this will return NULL and we will send reject the RACH.
L3ImmediateAssignment *iap = GPRS::makeSingleBlockImmediateAssign(rach, mCcchNextWriteTime.FN() + 4);
if (iap) {
L2LogicalChannelBase::l2sendm(*iap,L3_UNIT_DATA);
delete iap;
delete rach;
} else {
}
return true; // We processed this rach and used the CCCH, one way or another.
}
// L2LogicalChannel *LCH;
// if (chtype == TCHFType) {
// // FIXME: This blocks at L2LAPDm::sendIdle!
// LCH = gBTS.getTCH();
// } else if (chtype == SDCCHType) {
// // We may reserve some SDCCH for CC and SMS.
// if (requestingLUR(rach->mRA)) {
// int SDCCHAvailable = gBTS.SDCCHAvailable();
// int SDCCHReserve = gConfig.getNum("GSM.Channels.SDCCHReserve");
// if (requestingLUR(rach->mRA) && SDCCHAvailable <= SDCCHReserve) {
// // (pat 2-2014) Changed this message and downgraded from CRIT.
// LOG(CRIT) << "LUR [Location Update Request] congestion, insufficient "<<LOGVAR(SDCCHAvailable) << " <= " <<LOGVAR(SDCCHReserve);
// goto failure;
// }
// }
//
// LCH = gBTS.getSDCCH();
// } else {
// LOG(NOTICE) << "RACH burst for unsupported service RA=" << rach->mRA;
// LCH = gBTS.getSDCCH(); // Try anyway.
// }
//
//
// // Nothing available?
// if (!LCH) {
// failure:
#if 0
// return false;
#endif
// }
if (! rach->mChan) {
delete rach;
continue;
}
// Success. Send an ImmediateAssignment.
int initialTA = rach->initialTA();
assert(initialTA >= 0 && initialTA <= 62); // enforced by AccessGrantResponder.
//LCH->l1InitPhy(rach->RSSI(),initialTA,gBTS.clock().systime(rach->mWhen.FN()));
gReports.incr("OpenBTS.GSM.RR.RACH.TA.Accepted",(int)(initialTA));
L2LogicalChannel *LCH = rach->mChan;
// TODO: Update T3101.
L3ImmediateAssignment assign(
L3RequestReference(rach->mRA,rach->mWhen),
LCH->channelDescription(),
L3TimingAdvance(initialTA)
);
//assign.setStartFrame(rach->mReadyTime.FN() + 104);
if (0) { // This was for debugging. Adding this delay made the layer1 connection reliable.
// Delay the channel assignment until the SACCH is known to be transmitting...
Time sacchStart = LCH->getSACCH()->getNextWriteTime();
now = gBTS.time(); // Must update this because getTCH blocked.
//.........这里部分代码省略.........
示例6: getAGCHLoad
// Global linkage:
int getAGCHLoad()
{
int result = 0;
result += gRachq.size();
return result + gGprsCcchMessageQ.getSize();
}
示例7: getPagingLoad
unsigned getPagingLoad() { return mPageQ.size(); }
示例8: addPage
void addPage(NewPagingEntry *npe) { mPageQ.write(npe); }