本文整理汇总了C++中InlineCost::isNever方法的典型用法代码示例。如果您正苦于以下问题:C++ InlineCost::isNever方法的具体用法?C++ InlineCost::isNever怎么用?C++ InlineCost::isNever使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类InlineCost
的用法示例。
在下文中一共展示了InlineCost::isNever方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: shouldInline
/// shouldInline - Return true if the inliner should attempt to inline
/// at the given CallSite.
bool Inliner::shouldInline(CallSite CS) {
InlineCost IC = getInlineCost(CS);
float FudgeFactor = getInlineFudgeFactor(CS);
if (IC.isAlways()) {
DOUT << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction();
return true;
}
if (IC.isNever()) {
DOUT << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction();
return false;
}
int Cost = IC.getValue();
int CurrentThreshold = InlineThreshold;
Function *Fn = CS.getCaller();
if (Fn && !Fn->isDeclaration()
&& Fn->hasFnAttr(Attribute::OptimizeForSize)
&& InlineThreshold != 50) {
CurrentThreshold = 50;
}
if (Cost >= (int)(CurrentThreshold * FudgeFactor)) {
DOUT << " NOT Inlining: cost=" << Cost
<< ", Call: " << *CS.getInstruction();
return false;
} else {
DOUT << " Inlining: cost=" << Cost
<< ", Call: " << *CS.getInstruction();
return true;
}
}
示例2: shouldInline
/// shouldInline - Return true if the inliner should attempt to inline
/// at the given CallSite.
bool Inliner::shouldInline(CallSite CS) {
InlineCost IC = getInlineCost(CS);
if (IC.isAlways()) {
DEBUG(dbgs() << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction() << "\n");
return true;
}
if (IC.isNever()) {
DEBUG(dbgs() << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
int Cost = IC.getValue();
Function *Caller = CS.getCaller();
int CurrentThreshold = getInlineThreshold(CS);
float FudgeFactor = getInlineFudgeFactor(CS);
int AdjThreshold = (int)(CurrentThreshold * FudgeFactor);
if (Cost >= AdjThreshold) {
DEBUG(dbgs() << " NOT Inlining: cost=" << Cost
<< ", thres=" << AdjThreshold
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
// Try to detect the case where the current inlining candidate caller
// (call it B) is a static function and is an inlining candidate elsewhere,
// and the current candidate callee (call it C) is large enough that
// inlining it into B would make B too big to inline later. In these
// circumstances it may be best not to inline C into B, but to inline B
// into its callers.
if (Caller->hasLocalLinkage()) {
int TotalSecondaryCost = 0;
bool outerCallsFound = false;
bool allOuterCallsWillBeInlined = true;
bool someOuterCallWouldNotBeInlined = false;
for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
I != E; ++I) {
CallSite CS2(*I);
// If this isn't a call to Caller (it could be some other sort
// of reference) skip it.
if (!CS2 || CS2.getCalledFunction() != Caller)
continue;
InlineCost IC2 = getInlineCost(CS2);
if (IC2.isNever())
allOuterCallsWillBeInlined = false;
if (IC2.isAlways() || IC2.isNever())
continue;
outerCallsFound = true;
int Cost2 = IC2.getValue();
int CurrentThreshold2 = getInlineThreshold(CS2);
float FudgeFactor2 = getInlineFudgeFactor(CS2);
if (Cost2 >= (int)(CurrentThreshold2 * FudgeFactor2))
allOuterCallsWillBeInlined = false;
// See if we have this case. We subtract off the penalty
// for the call instruction, which we would be deleting.
if (Cost2 < (int)(CurrentThreshold2 * FudgeFactor2) &&
Cost2 + Cost - (InlineConstants::CallPenalty + 1) >=
(int)(CurrentThreshold2 * FudgeFactor2)) {
someOuterCallWouldNotBeInlined = true;
TotalSecondaryCost += Cost2;
}
}
// If all outer calls to Caller would get inlined, the cost for the last
// one is set very low by getInlineCost, in anticipation that Caller will
// be removed entirely. We did not account for this above unless there
// is only one caller of Caller.
if (allOuterCallsWillBeInlined && Caller->use_begin() != Caller->use_end())
TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
if (outerCallsFound && someOuterCallWouldNotBeInlined &&
TotalSecondaryCost < Cost) {
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
" Cost = " << Cost <<
", outer Cost = " << TotalSecondaryCost << '\n');
return false;
}
}
DEBUG(dbgs() << " Inlining: cost=" << Cost
<< ", thres=" << AdjThreshold
<< ", Call: " << *CS.getInstruction() << '\n');
return true;
}
示例3: shouldInline
/// Return true if the inliner should attempt to inline at the given CallSite.
bool Inliner::shouldInline(CallSite CS) {
InlineCost IC = getInlineCost(CS);
if (IC.isAlways()) {
DEBUG(dbgs() << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction() << "\n");
emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
" should always be inlined (cost=always)");
return true;
}
if (IC.isNever()) {
DEBUG(dbgs() << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction() << "\n");
emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
" should never be inlined (cost=never)"));
return false;
}
Function *Caller = CS.getCaller();
if (!IC) {
DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost()
<< ", thres=" << (IC.getCostDelta() + IC.getCost())
<< ", Call: " << *CS.getInstruction() << "\n");
emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
" too costly to inline (cost=") +
Twine(IC.getCost()) + ", threshold=" +
Twine(IC.getCostDelta() + IC.getCost()) + ")");
return false;
}
// Try to detect the case where the current inlining candidate caller (call
// it B) is a static or linkonce-ODR function and is an inlining candidate
// elsewhere, and the current candidate callee (call it C) is large enough
// that inlining it into B would make B too big to inline later. In these
// circumstances it may be best not to inline C into B, but to inline B into
// its callers.
//
// This only applies to static and linkonce-ODR functions because those are
// expected to be available for inlining in the translation units where they
// are used. Thus we will always have the opportunity to make local inlining
// decisions. Importantly the linkonce-ODR linkage covers inline functions
// and templates in C++.
//
// FIXME: All of this logic should be sunk into getInlineCost. It relies on
// the internal implementation of the inline cost metrics rather than
// treating them as truly abstract units etc.
if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) {
int TotalSecondaryCost = 0;
// The candidate cost to be imposed upon the current function.
int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
// This bool tracks what happens if we do NOT inline C into B.
bool callerWillBeRemoved = Caller->hasLocalLinkage();
// This bool tracks what happens if we DO inline C into B.
bool inliningPreventsSomeOuterInline = false;
for (User *U : Caller->users()) {
CallSite CS2(U);
// If this isn't a call to Caller (it could be some other sort
// of reference) skip it. Such references will prevent the caller
// from being removed.
if (!CS2 || CS2.getCalledFunction() != Caller) {
callerWillBeRemoved = false;
continue;
}
InlineCost IC2 = getInlineCost(CS2);
++NumCallerCallersAnalyzed;
if (!IC2) {
callerWillBeRemoved = false;
continue;
}
if (IC2.isAlways())
continue;
// See if inlining or original callsite would erase the cost delta of
// this callsite. We subtract off the penalty for the call instruction,
// which we would be deleting.
if (IC2.getCostDelta() <= CandidateCost) {
inliningPreventsSomeOuterInline = true;
TotalSecondaryCost += IC2.getCost();
}
}
// If all outer calls to Caller would get inlined, the cost for the last
// one is set very low by getInlineCost, in anticipation that Caller will
// be removed entirely. We did not account for this above unless there
// is only one caller of Caller.
if (callerWillBeRemoved && !Caller->use_empty())
TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
" Cost = " << IC.getCost() <<
", outer Cost = " << TotalSecondaryCost << '\n');
emitAnalysis(
CS, Twine("Not inlining. Cost of inlining " +
CS.getCalledFunction()->getName() +
" increases the cost of inlining " +
CS.getCaller()->getName() + " in other contexts"));
//.........这里部分代码省略.........
示例4: shouldPartialInline
bool PartialInlinerImpl::shouldPartialInline(
CallSite CS, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost,
OptimizationRemarkEmitter &ORE) {
using namespace ore;
if (SkipCostAnalysis)
return true;
Instruction *Call = CS.getInstruction();
Function *Callee = CS.getCalledFunction();
assert(Callee == Cloner.ClonedFunc);
Function *Caller = CS.getCaller();
auto &CalleeTTI = (*GetTTI)(*Callee);
InlineCost IC = getInlineCost(CS, getInlineParams(), CalleeTTI,
*GetAssumptionCache, GetBFI, PSI, &ORE);
if (IC.isAlways()) {
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
<< NV("Callee", Cloner.OrigFunc)
<< " should always be fully inlined, not partially");
return false;
}
if (IC.isNever()) {
ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
<< NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
<< NV("Caller", Caller)
<< " because it should never be inlined (cost=never)");
return false;
}
if (!IC) {
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
<< NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
<< NV("Caller", Caller) << " because too costly to inline (cost="
<< NV("Cost", IC.getCost()) << ", threshold="
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
return false;
}
const DataLayout &DL = Caller->getParent()->getDataLayout();
// The savings of eliminating the call:
int NonWeightedSavings = getCallsiteCost(CS, DL);
BlockFrequency NormWeightedSavings(NonWeightedSavings);
// Weighted saving is smaller than weighted cost, return false
if (NormWeightedSavings < WeightedOutliningRcost) {
ORE.emit(
OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", Call)
<< NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
<< NV("Caller", Caller) << " runtime overhead (overhead="
<< NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
<< ", savings="
<< NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) << ")"
<< " of making the outlined call is too high");
return false;
}
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
<< NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
<< NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
<< " (threshold="
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
return true;
}
示例5: OptimizationRemarkMissed
/// Return the cost only if the inliner should attempt to inline at the given
/// CallSite. If we return the cost, we will emit an optimisation remark later
/// using that cost, so we won't do so from this function.
static Optional<InlineCost>
shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
OptimizationRemarkEmitter &ORE) {
using namespace ore;
InlineCost IC = GetInlineCost(CS);
Instruction *Call = CS.getInstruction();
Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller();
if (IC.isAlways()) {
LLVM_DEBUG(dbgs() << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction() << "\n");
return IC;
}
if (IC.isNever()) {
LLVM_DEBUG(dbgs() << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction() << "\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
<< NV("Callee", Callee) << " not inlined into "
<< NV("Caller", Caller)
<< " because it should never be inlined (cost=never)";
});
return None;
}
if (!IC) {
LLVM_DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost()
<< ", thres=" << IC.getThreshold()
<< ", Call: " << *CS.getInstruction() << "\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
<< NV("Callee", Callee) << " not inlined into "
<< NV("Caller", Caller) << " because too costly to inline (cost="
<< NV("Cost", IC.getCost())
<< ", threshold=" << NV("Threshold", IC.getThreshold()) << ")";
});
return None;
}
int TotalSecondaryCost = 0;
if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
LLVM_DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction()
<< " Cost = " << IC.getCost()
<< ", outer Cost = " << TotalSecondaryCost << '\n');
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
Call)
<< "Not inlining. Cost of inlining " << NV("Callee", Callee)
<< " increases the cost of inlining " << NV("Caller", Caller)
<< " in other contexts";
});
// IC does not bool() to false, so get an InlineCost that will.
// This will not be inspected to make an error message.
return None;
}
LLVM_DEBUG(dbgs() << " Inlining: cost=" << IC.getCost()
<< ", thres=" << IC.getThreshold()
<< ", Call: " << *CS.getInstruction() << '\n');
return IC;
}
示例6: inlineFunctions
/// inlineFuctions - Walk all call sites in all functions supplied by
/// client. Inline as many call sites as possible. Delete completely
/// inlined functions.
void BasicInlinerImpl::inlineFunctions() {
// Scan through and identify all call sites ahead of time so that we only
// inline call sites in the original functions, not call sites that result
// from inlining other functions.
std::vector<CallSite> CallSites;
for (std::vector<Function *>::iterator FI = Functions.begin(),
FE = Functions.end(); FI != FE; ++FI) {
Function *F = *FI;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
CallSite CS(cast<Value>(I));
if (CS && CS.getCalledFunction()
&& !CS.getCalledFunction()->isDeclaration())
CallSites.push_back(CS);
}
}
DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
// Inline call sites.
bool Changed = false;
do {
Changed = false;
for (unsigned index = 0; index != CallSites.size() && !CallSites.empty();
++index) {
CallSite CS = CallSites[index];
if (Function *Callee = CS.getCalledFunction()) {
// Eliminate calls that are never inlinable.
if (Callee->isDeclaration() ||
CS.getInstruction()->getParent()->getParent() == Callee) {
CallSites.erase(CallSites.begin() + index);
--index;
continue;
}
InlineCost IC = CA.getInlineCost(CS, NeverInline);
if (IC.isAlways()) {
DEBUG(dbgs() << " Inlining: cost=always"
<<", call: " << *CS.getInstruction());
} else if (IC.isNever()) {
DEBUG(dbgs() << " NOT Inlining: cost=never"
<<", call: " << *CS.getInstruction());
continue;
} else {
int Cost = IC.getValue();
if (Cost >= (int) BasicInlineThreshold) {
DEBUG(dbgs() << " NOT Inlining: cost = " << Cost
<< ", call: " << *CS.getInstruction());
continue;
} else {
DEBUG(dbgs() << " Inlining: cost = " << Cost
<< ", call: " << *CS.getInstruction());
}
}
// Inline
InlineFunctionInfo IFI(0, TD);
if (InlineFunction(CS, IFI)) {
Callee->removeDeadConstantUsers();
if (Callee->isDefTriviallyDead())
DeadFunctions.insert(Callee);
Changed = true;
CallSites.erase(CallSites.begin() + index);
--index;
}
}
}
} while (Changed);
// Remove completely inlined functions from module.
for(SmallPtrSet<Function *, 8>::iterator I = DeadFunctions.begin(),
E = DeadFunctions.end(); I != E; ++I) {
Function *D = *I;
Module *M = D->getParent();
M->getFunctionList().remove(D);
}
}
示例7: shouldInline
/// shouldInline - Return true if the inliner should attempt to inline
/// at the given CallSite.
bool Inliner::shouldInline(CallSite CS) {
InlineCost IC = getInlineCost(CS);
if (IC.isAlways()) {
DEBUG(dbgs() << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction() << "\n");
return true;
}
if (IC.isNever()) {
DEBUG(dbgs() << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
int Cost = IC.getValue();
Function *Caller = CS.getCaller();
int CurrentThreshold = getInlineThreshold(CS);
float FudgeFactor = getInlineFudgeFactor(CS);
int AdjThreshold = (int)(CurrentThreshold * FudgeFactor);
if (Cost >= AdjThreshold) {
DEBUG(dbgs() << " NOT Inlining: cost=" << Cost
<< ", thres=" << AdjThreshold
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
// Try to detect the case where the current inlining candidate caller (call
// it B) is a static or linkonce-ODR function and is an inlining candidate
// elsewhere, and the current candidate callee (call it C) is large enough
// that inlining it into B would make B too big to inline later. In these
// circumstances it may be best not to inline C into B, but to inline B into
// its callers.
//
// This only applies to static and linkonce-ODR functions because those are
// expected to be available for inlining in the translation units where they
// are used. Thus we will always have the opportunity to make local inlining
// decisions. Importantly the linkonce-ODR linkage covers inline functions
// and templates in C++.
if (Caller->hasLocalLinkage() ||
Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
int TotalSecondaryCost = 0;
bool outerCallsFound = false;
// This bool tracks what happens if we do NOT inline C into B.
bool callerWillBeRemoved = true;
// This bool tracks what happens if we DO inline C into B.
bool inliningPreventsSomeOuterInline = false;
for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
I != E; ++I) {
CallSite CS2(*I);
// If this isn't a call to Caller (it could be some other sort
// of reference) skip it. Such references will prevent the caller
// from being removed.
if (!CS2 || CS2.getCalledFunction() != Caller) {
callerWillBeRemoved = false;
continue;
}
InlineCost IC2 = getInlineCost(CS2);
if (IC2.isNever())
callerWillBeRemoved = false;
if (IC2.isAlways() || IC2.isNever())
continue;
outerCallsFound = true;
int Cost2 = IC2.getValue();
int CurrentThreshold2 = getInlineThreshold(CS2);
float FudgeFactor2 = getInlineFudgeFactor(CS2);
if (Cost2 >= (int)(CurrentThreshold2 * FudgeFactor2))
callerWillBeRemoved = false;
// See if we have this case. We subtract off the penalty
// for the call instruction, which we would be deleting.
if (Cost2 < (int)(CurrentThreshold2 * FudgeFactor2) &&
Cost2 + Cost - (InlineConstants::CallPenalty + 1) >=
(int)(CurrentThreshold2 * FudgeFactor2)) {
inliningPreventsSomeOuterInline = true;
TotalSecondaryCost += Cost2;
}
}
// If all outer calls to Caller would get inlined, the cost for the last
// one is set very low by getInlineCost, in anticipation that Caller will
// be removed entirely. We did not account for this above unless there
// is only one caller of Caller.
if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
if (outerCallsFound && inliningPreventsSomeOuterInline &&
TotalSecondaryCost < Cost) {
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
" Cost = " << Cost <<
", outer Cost = " << TotalSecondaryCost << '\n');
return false;
}
}
//.........这里部分代码省略.........
示例8: shouldInline
/// Return true if the inliner should attempt to inline at the given CallSite.
static bool shouldInline(CallSite CS,
function_ref<InlineCost(CallSite CS)> GetInlineCost,
OptimizationRemarkEmitter &ORE) {
using namespace ore;
InlineCost IC = GetInlineCost(CS);
Instruction *Call = CS.getInstruction();
Function *Callee = CS.getCalledFunction();
if (IC.isAlways()) {
DEBUG(dbgs() << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction() << "\n");
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
<< NV("Callee", Callee)
<< " should always be inlined (cost=always)");
return true;
}
if (IC.isNever()) {
DEBUG(dbgs() << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction() << "\n");
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "NeverInline", Call)
<< NV("Callee", Callee)
<< " should never be inlined (cost=never)");
return false;
}
Function *Caller = CS.getCaller();
if (!IC) {
DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost()
<< ", thres=" << (IC.getCostDelta() + IC.getCost())
<< ", Call: " << *CS.getInstruction() << "\n");
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
<< NV("Callee", Callee) << " too costly to inline (cost="
<< NV("Cost", IC.getCost()) << ", threshold="
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
return false;
}
int TotalSecondaryCost = 0;
if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction()
<< " Cost = " << IC.getCost()
<< ", outer Cost = " << TotalSecondaryCost << '\n');
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE,
"IncreaseCostInOtherContexts", Call)
<< "Not inlining. Cost of inlining " << NV("Callee", Callee)
<< " increases the cost of inlining " << NV("Caller", Caller)
<< " in other contexts");
return false;
}
DEBUG(dbgs() << " Inlining: cost=" << IC.getCost()
<< ", thres=" << (IC.getCostDelta() + IC.getCost())
<< ", Call: " << *CS.getInstruction() << '\n');
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBeInlined", Call)
<< NV("Callee", Callee) << " can be inlined into "
<< NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
<< " (threshold="
<< NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")");
return true;
}