当前位置: 首页>>代码示例>>C++>>正文


C++ IncidentTieIterator::valid方法代码示例

本文整理汇总了C++中IncidentTieIterator::valid方法的典型用法代码示例。如果您正苦于以下问题:C++ IncidentTieIterator::valid方法的具体用法?C++ IncidentTieIterator::valid怎么用?C++ IncidentTieIterator::valid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在IncidentTieIterator的用法示例。


在下文中一共展示了IncidentTieIterator::valid方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: primarySetting

/**
 * Create primary setting based on a network
 */
std::vector<int> * primarySetting(const Network * pNetwork, int ego)
{
	std::vector<int> *setting = new std::vector<int>;
	std::set<int> neighbors;
	for (IncidentTieIterator iter = pNetwork->outTies(ego);
		 iter.valid();
		 iter.next())
	{
		neighbors.insert(iter.actor());
	}
	for (IncidentTieIterator iter = pNetwork->inTies(ego);
		 iter.valid();
		 iter.next())
	{
		neighbors.insert(iter.actor());
	}
	neighbors.insert(ego);
	// when finished (not all done here) copy to the vector
	for (std::set<int>::const_iterator iter1 = neighbors.begin();
		 iter1 != neighbors.end(); iter1++)
	{
		setting->push_back(*iter1);
	}
	return setting;
}
开发者ID:cran,项目名称:RSiena,代码行数:28,代码来源:NetworkUtils.cpp

示例2: preprocessEgo

/**
 * Does the necessary preprocessing work for calculating the tie flip
 * contributions for a specific ego. This method must be invoked before
 * calling NetworkEffect::calculateTieFlipContribution(...).
 */
void TwoNetworkDependentBehaviorEffect::preprocessEgo(int ego)
{
	// set up the covariate based on current values of the network and behavior
	const Network * pFirstNetwork = this->pFirstNetwork();

	for (int i = 0; i < pFirstNetwork->n(); i++)
	{
		this->lfirstTotalAlterValues[i] = 0;
		if (pFirstNetwork->outDegree(i) > 0)
		{
			for (IncidentTieIterator iter = pFirstNetwork->outTies(i);
				 iter.valid();
				 iter.next())
			{
				int j = iter.actor();
				this->lfirstTotalAlterValues[i] += this->centeredValue(j);
// 				Rprintf("%d %f %d %d %d %d\n",
// 					j,
// 					this->centeredValue(j),
// 					this->period(),
			}
		}
		else
		{
			this->lfirstTotalAlterValues[i] = 0;
		}
//		Rprintf("%d %f\n", i,this->ltotalAlterValues[i]);
	}

	for (int i = 0; i < pFirstNetwork->m(); i++)
	{
		this->lfirstTotalInAlterValues[i] = 0;
		if (pFirstNetwork->inDegree(i) > 0)
		{
			for (IncidentTieIterator iter = pFirstNetwork->inTies(i);
				 iter.valid();
				 iter.next())
			{
				int j = iter.actor();
				this->lfirstTotalInAlterValues[i] += this->centeredValue(j);
			}
		}
		else
		{
			this->lfirstTotalInAlterValues[i] = 0;
		}
	}
}
开发者ID:cran,项目名称:RSiena,代码行数:53,代码来源:TwoNetworkDependentBehaviorEffect.cpp

示例3: value

/**
 * Returns the value of this function for the given alter. It is assumed
 * that the function has been initialized before and pre-processed with
 * respect to a certain ego.
 */
double DifferentCovariateOutStarFunction::value(int alter)
{
	int statistic = 0;
	if  (!(this->lexcludeMissing && this->missing(alter)))
	{
		const Network * pNetwork = this->pNetwork();
		// Iterate over incoming ties in network W
		for (IncidentTieIterator iter =
				pNetwork->inTies(this->ego());
			iter.valid();
			iter.next())
			{
				// Get the sender of the incoming tie.
				int h = iter.actor();
				// in-2-stars:
				if (!(this->lexcludeMissing && this->missing(h)))
					{
					if ((fabs(this->CovariateNetworkAlterFunction::value(h)
				- this->CovariateNetworkAlterFunction::value(this->ego()))
									> EPSILON) &&
						((lnotBothDifferent) || (fabs(this->CovariateNetworkAlterFunction::value(h)
				- this->CovariateNetworkAlterFunction::value(alter))
									> EPSILON)) &&
					(pNetwork->tieValue(alter, h) >= 1))
						{
							statistic++ ;
						}
					}
			}
	}
	return statistic;
}
开发者ID:cran,项目名称:RSiena,代码行数:37,代码来源:DifferentCovariateOutStarFunction.cpp

示例4: egoStatistic

/**
 * Returns the statistic corresponding to the given ego with respect to the
 * given values of the behavior variable.
 */
double AltersCovariateAvAltEffect::egoStatistic(int ego, double * currentValues)
{
	double statistic = 0;
	const Network * pNetwork = this->pNetwork();
	int neighborCount = 0;

	for (IncidentTieIterator iter = pNetwork->outTies(ego);
		 iter.valid();
		 iter.next())
	{
		int j = iter.actor();

		if (!this->missing(this->period(), j) &&
			!this->missing(this->period() + 1, j) &&
			!this->missingCovariate(j,this->period()))
		{
			statistic += currentValues[j] * this->covariateValue(j);
			neighborCount++;
		}
	}

	if ((neighborCount > 0) && (this->ldivide))
	{
		statistic *= currentValues[ego] / neighborCount;
	}

	return statistic;
}
开发者ID:cran,项目名称:RSiena,代码行数:32,代码来源:AltersCovariateAvAltEffect.cpp

示例5: calculateChangeContribution

/**
 * Calculates the change in the statistic corresponding to this effect if
 * the given actor would change his behavior by the given amount.
 */
double SimilarityEffect::calculateChangeContribution(int actor,
	int difference)
{
	double contribution = 0;
	const Network * pNetwork = this->pNetwork();

	if (pNetwork->outDegree(actor) > 0)
	{
		// The formula for the average similarity effect:
		// s_i(x) = avg(sim(v_i, v_j) - centeringConstant) over all neighbors
		// j of i.
		// sim(v_i, v_j) = 1.0 - |v_i - v_j| / observedRange
		// We need to calculate the change delta in s_i(x), if we changed
		// v_i to v_i + d (d being the given amount of change in v_i).
		// To this end, we can disregard the centering constant and
		// compute the average change in similarity, namely,
		// avg(sim(v_i + d, v_j) - sim(v_i, v_j)) =
		// avg(1 - |v_i+d-v_j|/range - 1 + |v_i-v_j|/range) =
		// avg(|v_i-v_j| - |v_i+d-v_j|) / range,
		// the average being taken over all neighbors of i.
		// The reasoning for avg. similarity x popularity alter effect is
		// similar.
		// This is what is calculated below.

		int oldValue = this->value(actor);
		int newValue = oldValue + difference;
		int totalChange = 0;

		for (IncidentTieIterator iter = pNetwork->outTies(actor);
			iter.valid();
			iter.next())
		{
			int j = iter.actor();
			int alterValue = this->value(j);
			int change =
				std::abs(oldValue - alterValue) - std::abs(newValue - alterValue);

			if (this->lalterPopularity)
			{
				change *= pNetwork->inDegree(j);
			}

			totalChange += change;
		}

		contribution = ((double) totalChange) / this->range();

		if (this->laverage)
		{
			contribution /= pNetwork->outDegree(actor);
		}

		if (this->legoPopularity)
		{
			contribution *= pNetwork->inDegree(actor);
		}
	}

	return contribution;
}
开发者ID:cran,项目名称:RSiena,代码行数:64,代码来源:SimilarityEffect.cpp

示例6: calculateChangeContribution

/**
 * Calculates the change in the statistic corresponding to this effect if
 * the given actor would change his behavior by the given amount.
 */
double AltersCovariateAvAltEffect::calculateChangeContribution(int actor,
	int difference)
{
	double contribution = 0;
	const Network * pNetwork = this->pNetwork();

	if (pNetwork->outDegree(actor) > 0)
	{

		double totalAlterValue = 0;

		for (IncidentTieIterator iter = pNetwork->outTies(actor);
			iter.valid();
			iter.next())
		{
			int j = iter.actor();                // identifies alter
			double alterValue = this->centeredValue(j) * this->covariateValue(j);
			totalAlterValue += alterValue;
		}

		if (this->ldivide)
		{
			contribution = difference * totalAlterValue /
				pNetwork->outDegree(actor);
		}
		else
		{
			contribution = difference * totalAlterValue;
		}
	}

	return contribution;
}
开发者ID:cran,项目名称:RSiena,代码行数:37,代码来源:AltersCovariateAvAltEffect.cpp

示例7: egoEndowmentStatistic

/**
 * Returns the statistic corresponding to the given ego as part of
 * the endowment function with respect to the initial values of a
 * behavior variable and the current values.
 */
double AltersCovariateAvAltEffect::egoEndowmentStatistic(int ego,
	const int * difference,
	double * currentValues)
{
	double statistic = 0;
	const Network * pNetwork = this->pNetwork();

	if (difference[ego] > 0 && !this->missingDummy(ego) && (pNetwork->outDegree(ego) > 0)) // otherwise, nothing to calculate...
	{
		double totalAlterValue = 0;

		for (IncidentTieIterator iter = pNetwork->outTies(ego);
				iter.valid();
				iter.next())
		{
			int j = iter.actor();                // identifies alter
			double alterValue = this->centeredValue(j) * this->covariateValue(j);
			totalAlterValue += alterValue;
		}

		if (this->ldivide)
		{
			statistic -= difference[ego] * totalAlterValue /
				pNetwork->outDegree(ego);
		}
		else
		{
			statistic -= difference[ego] * totalAlterValue;
		}
	}
	return statistic;
}
开发者ID:cran,项目名称:RSiena,代码行数:37,代码来源:AltersCovariateAvAltEffect.cpp

示例8:

/**
 * Returns the statistic corresponding to the given ego with respect to the
 * currentValues given for the behavior variable.
 */
double AverageAlterDist2Effect::egoStatistic(int i, double * currentValues)
{
	double statistic = 0;
	const Network * pNetwork = this->pNetwork();
	int neighborCount = 0;

	for (IncidentTieIterator iter = pNetwork->outTies(i);
		 iter.valid();
		 iter.next())
	{
		int j = iter.actor();
		double alterValue = 0;
		int tieToi = 0;
		for (IncidentTieIterator iteri = pNetwork->outTies(j);
			iteri.valid();
			iteri.next())
		{
			if (i != iteri.actor())
			{
				alterValue += currentValues[iteri.actor()];
			}
			else
			{
				tieToi = 1;
			}
		}
// tieToi =  this->pNetwork()->tieValue(iter.actor(), i);
		if ((pNetwork->outDegree(j) > tieToi) & (this->ldivide2))
		{
			alterValue /= (pNetwork->outDegree(j) - tieToi);
		}
		statistic += alterValue;
		neighborCount++;
	}

	if (neighborCount > 0)
	{
		statistic *= currentValues[i];
		if (this->ldivide1)
		{
			statistic /= neighborCount;
		}
	}

	return statistic;
}
开发者ID:cran,项目名称:RSiena,代码行数:50,代码来源:AverageAlterDist2Effect.cpp

示例9:

/**
 * Returns the statistic corresponding to the given ego with respect to the
 * currentValues given for the behavior variable.
 */
double AverageAlterInDist2Effect::egoStatistic(int i, double * currentValues)
{
	double statistic = 0;
	const Network * pNetwork = this->pNetwork();
	int neighborCount = 0;

	for (IncidentTieIterator iter = pNetwork->outTies(i);
		 iter.valid();
		 iter.next())
	{
		int j = iter.actor();
		double alterValue = 0;
		for (IncidentTieIterator iteri = pNetwork->inTies(j);
			iteri.valid();
			iteri.next())
		{
			if (i != iteri.actor())
			{
				alterValue += currentValues[iteri.actor()];
			}
		}
// tieFromi =  this->pNetwork()->tieValue(i, iter.actor());
		if ((pNetwork->inDegree(j) > 1) & (this->ldivide2))
		{
			alterValue /= (pNetwork->inDegree(j) - 1);
				// there always is a tie i -> iteri.actor()
		}
		statistic += alterValue;
		neighborCount++;
	}

	if (neighborCount > 0)
	{
		statistic *= currentValues[i];
		if (this->ldivide1)
		{
			statistic /= neighborCount;
		}
	}

	return statistic;
}
开发者ID:cran,项目名称:RSiena,代码行数:46,代码来源:AverageAlterInDist2Effect.cpp

示例10:

/**
 * Modifies the two-path count given the case the observed network is a
 * two mode network.
 * @param[in] rNetwork The observed network
 * @param[in] ego The ego of the modified tie
 * @param[in] alter The alter of the modified tie
 * @param[in[ val The magnitude of modification
 */
void DistanceTwoLayer::modify2PathCountTwoMode(const Network& rNetwork, int ego,
		int alter, int val) {
	// in a two mode network the exist no triangles, therefore it is
	// sufficient to iterate over all incoming ties of alter
	for (IncidentTieIterator iter = rNetwork.inTies(alter); iter.valid();
			iter.next()) {
		if (iter.actor() != ego) {
			modifyTieValue(ego, iter.actor(), val);
		}
	}
}
开发者ID:cran,项目名称:RSiena,代码行数:19,代码来源:DistanceTwoLayer.cpp

示例11: initializeTwoMode

/**
 * Initializes the layer given the reference network is a two mode
 * network.
 */
void DistanceTwoLayer::initializeTwoMode(const Network& rNetwork) {
	// this is a two mode network so we do not need to check for loops
	// nor do we have to store the reciever two paths.
	for (int i = 0; i < rNetwork.m(); ++i) {
		// construct all pairs
		for (IncidentTieIterator outerIter = rNetwork.inTies(i);
				outerIter.valid(); outerIter.next()) {
			int outerActor = outerIter.actor();
			// copy the iterator
			IncidentTieIterator innerIter(outerIter);
			// move to the next position
			innerIter.next();
			for (; innerIter.valid(); innerIter.next()) {
				modifyTieValue(outerActor, innerIter.actor(), 1);
			}
		}
	}
}
开发者ID:cran,项目名称:RSiena,代码行数:22,代码来源:DistanceTwoLayer.cpp

示例12: egoStatistic

/**
 * Returns the statistic corresponding to the given ego with respect to the
 * given values of the behavior variable.
 */
double SimilarityEffect::egoStatistic(int ego,
	double * currentValues)
{
	const Network * pNetwork = this->pNetwork();

	double statistic = 0;
	int neighborCount = 0;

	for (IncidentTieIterator iter = pNetwork->outTies(ego);
		 iter.valid();
		 iter.next())
	{
		int j = iter.actor();

		if (!this->missing(this->period(), j) &&
			!this->missing(this->period() + 1, j))
		{
			double tieStatistic =
				this->similarity(currentValues[ego], currentValues[j]);

			if (this->lalterPopularity)
			{
				tieStatistic *= pNetwork->inDegree(j);
			}

			statistic += tieStatistic;
			neighborCount++;
		}
	}

	if (this->laverage && neighborCount > 0)
	{
		statistic /= neighborCount;
	}

	if (this->legoPopularity)
	{
		statistic *= pNetwork->inDegree(ego);
	}

	return statistic;
}
开发者ID:cran,项目名称:RSiena,代码行数:46,代码来源:SimilarityEffect.cpp


注:本文中的IncidentTieIterator::valid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。