本文整理汇总了C++中InArgs::get_sg_basis方法的典型用法代码示例。如果您正苦于以下问题:C++ InArgs::get_sg_basis方法的具体用法?C++ InArgs::get_sg_basis怎么用?C++ InArgs::get_sg_basis使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类InArgs
的用法示例。
在下文中一共展示了InArgs::get_sg_basis方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Timer
//.........这里部分代码省略.........
Teuchos::Array<int> p_indexes =
outArgs.get_DgDp(i,j).getDerivativeMultiVector().getParamIndexes();
Teuchos::RCP<ParamVec> p_vec;
if (p_indexes.size() == 0)
p_vec = Teuchos::rcp(&sacado_param_vec[j],false);
else {
p_vec = Teuchos::rcp(new ParamVec);
for (int k=0; k<p_indexes.size(); k++)
p_vec->addParam(sacado_param_vec[j][p_indexes[k]].family,
sacado_param_vec[j][p_indexes[k]].baseValue);
}
app->evaluateResponseTangent(i, alpha, beta, omega, curr_time, false,
x_dot.get(), x_dotdot.get(), *x,
sacado_param_vec, p_vec.get(),
NULL, NULL, NULL, NULL, g_out.get(), NULL,
dgdp_out.get());
g_computed = true;
}
}
// Need to handle dg/dp for distributed p
if (g_out != Teuchos::null && !g_computed)
app->evaluateResponse(i, curr_time, x_dot.get(), x_dotdot.get(), *x, sacado_param_vec,
*g_out);
}
//
// Stochastic Galerkin
//
#ifdef ALBANY_SG_MP
InArgs::sg_const_vector_t x_sg = inArgs.get_x_sg();
if (x_sg != Teuchos::null) {
app->init_sg(inArgs.get_sg_basis(),
inArgs.get_sg_quadrature(),
inArgs.get_sg_expansion(),
x_sg->productComm());
InArgs::sg_const_vector_t x_dot_sg = inArgs.get_x_dot_sg();
InArgs::sg_const_vector_t x_dotdot_sg = inArgs.get_x_dotdot_sg();
if (x_dot_sg != Teuchos::null || x_dotdot_sg != Teuchos::null) {
alpha = inArgs.get_alpha();
omega = inArgs.get_omega();
beta = inArgs.get_beta();
curr_time = inArgs.get_t();
}
InArgs::sg_const_vector_t epetra_p_sg = inArgs.get_p_sg(0);
Teuchos::Array<int> p_sg_index;
for (int i=0; i<num_param_vecs; i++) {
InArgs::sg_const_vector_t p_sg = inArgs.get_p_sg(i);
if (p_sg != Teuchos::null) {
p_sg_index.push_back(i);
for (int j=0; j<p_sg_vals[i].size(); j++) {
int num_sg_blocks = p_sg->size();
p_sg_vals[i][j].reset(app->getStochasticExpansion(), num_sg_blocks);
p_sg_vals[i][j].copyForWrite();
for (int l=0; l<num_sg_blocks; l++) {
p_sg_vals[i][j].fastAccessCoeff(l) = (*p_sg)[l][j];
}
}
}
}
OutArgs::sg_vector_t f_sg = outArgs.get_f_sg();
OutArgs::sg_operator_t W_sg = outArgs.get_W_sg();
bool f_sg_computed = false;
示例2: if
void
Stokhos::SGQuadModelEvaluator::
evalModel(const InArgs& inArgs, const OutArgs& outArgs) const
{
// Create underlying inargs
InArgs me_inargs = me->createInArgs();
if (me_inargs.supports(IN_ARG_x))
me_inargs.set_x(inArgs.get_x());
if (me_inargs.supports(IN_ARG_x_dot))
me_inargs.set_x_dot(inArgs.get_x_dot());
if (me_inargs.supports(IN_ARG_alpha))
me_inargs.set_alpha(inArgs.get_alpha());
if (me_inargs.supports(IN_ARG_beta))
me_inargs.set_beta(inArgs.get_beta());
if (me_inargs.supports(IN_ARG_t))
me_inargs.set_t(inArgs.get_t());
for (int i=0; i<num_p; i++)
me_inargs.set_p(i, inArgs.get_p(i));
// Create underlying outargs
OutArgs me_outargs = me->createOutArgs();
if (me_outargs.supports(OUT_ARG_f))
me_outargs.set_f(outArgs.get_f());
if (me_outargs.supports(OUT_ARG_W))
me_outargs.set_W(outArgs.get_W());
for (int j=0; j<num_p; j++)
if (!outArgs.supports(OUT_ARG_DfDp, j).none())
me_outargs.set_DfDp(j, outArgs.get_DfDp(j));
for (int i=0; i<num_g; i++) {
me_outargs.set_g(i, outArgs.get_g(i));
if (!outArgs.supports(OUT_ARG_DgDx, i).none())
me_outargs.set_DgDx(i, outArgs.get_DgDx(i));
if (!outArgs.supports(OUT_ARG_DgDx_dot, i).none())
me_outargs.set_DgDx(i, outArgs.get_DgDx_dot(i));
for (int j=0; j<num_p; j++)
if (!outArgs.supports(OUT_ARG_DgDp, i, j).none())
me_outargs.set_DgDp(i, j, outArgs.get_DgDp(i,j));
}
bool do_quad = false;
InArgs::sg_const_vector_t x_sg;
InArgs::sg_const_vector_t x_dot_sg;
Teuchos::Array<InArgs::sg_const_vector_t> p_sg(num_p);
OutArgs::sg_vector_t f_sg;
OutArgs::sg_operator_t W_sg;
Teuchos::Array<SGDerivative> dfdp_sg(num_p);
Teuchos::Array<OutArgs::sg_vector_t> g_sg(num_g);
Teuchos::Array<SGDerivative> dgdx_sg(num_g);
Teuchos::Array<SGDerivative> dgdx_dot_sg(num_g);
Teuchos::Array< Teuchos::Array<SGDerivative> > dgdp_sg(num_g);
TEUCHOS_TEST_FOR_EXCEPTION(inArgs.get_sg_basis() == Teuchos::null,
std::logic_error,
"Error! Stokhos::SGQuadModelEvaluator::evalModel(): " <<
"SG basis inArg cannot be null!");
TEUCHOS_TEST_FOR_EXCEPTION(inArgs.get_sg_quadrature() == Teuchos::null,
std::logic_error,
"Error! Stokhos::SGQuadModelEvaluator::evalModel(): " <<
"SG quadrature inArg cannot be null!");
Teuchos::RCP<const Stokhos::OrthogPolyBasis<int,double> > basis =
inArgs.get_sg_basis();
Teuchos::RCP< const Stokhos::Quadrature<int,double> > quad =
inArgs.get_sg_quadrature();
if (inArgs.supports(IN_ARG_x_sg)) {
x_sg = inArgs.get_x_sg();
if (x_sg != Teuchos::null) {
do_quad = true;
}
}
if (inArgs.supports(IN_ARG_x_dot_sg)) {
x_dot_sg = inArgs.get_x_dot_sg();
if (x_dot_sg != Teuchos::null) {
do_quad = true;
}
}
for (int i=0; i<num_p; i++) {
p_sg[i] = inArgs.get_p_sg(i);
if (p_sg[i] != Teuchos::null) {
do_quad = true;
}
}
if (outArgs.supports(OUT_ARG_f_sg)) {
f_sg = outArgs.get_f_sg();
if (f_sg != Teuchos::null)
f_sg->init(0.0);
}
if (outArgs.supports(OUT_ARG_W_sg)) {
W_sg = outArgs.get_W_sg();
if (W_sg != Teuchos::null)
W_sg->init(0.0);
}
for (int i=0; i<num_p; i++) {
if (!outArgs.supports(OUT_ARG_DfDp_sg, i).none()) {
dfdp_sg[i] = outArgs.get_DfDp_sg(i);
if (dfdp_sg[i].getMultiVector() != Teuchos::null)
dfdp_sg[i].getMultiVector()->init(0.0);
else if (dfdp_sg[i].getLinearOp() != Teuchos::null)
dfdp_sg[i].getLinearOp()->init(0.0);
}
}
//.........这里部分代码省略.........
示例3: Timer
//.........这里部分代码省略.........
Petra::TpetraVector_To_EpetraVector(g_outT, *g_out, comm);
//convert dgdp_outT to Epetra_MultiVector dgdp_out
if (dgdp_out != Teuchos::null)
Petra::TpetraMultiVector_To_EpetraMultiVector(dgdp_outT, *dgdp_out, comm);
g_computed = true;
}
}
// Need to handle dg/dp for distributed p
for(int j=0; j<num_dist_param_vecs; j++) {
Derivative dgdp_out = outArgs.get_DgDp(i,j+num_param_vecs);
if (!dgdp_out.isEmpty()) {
dgdp_out.getMultiVector()->PutScalar(0.);
app->evaluateResponseDistParamDeriv(i, curr_time, x_dot.get(), x_dotdot.get(), *x, sacado_param_vec, dist_param_names[j], dgdp_out.getMultiVector().get());
}
}
if (g_out != Teuchos::null && !g_computed) {
//create Tpetra copy of g_out, call it g_outT
g_outT = Petra::EpetraVector_To_TpetraVectorNonConst(*g_out, commT);
app->evaluateResponseT(i, curr_time, x_dotT.get(), x_dotdotT.get(), *xT, sacado_param_vec,
*g_outT);
//convert g_outT to Epetra_Vector g_out
Petra::TpetraVector_To_EpetraVector(g_outT, *g_out, comm);
}
}
//
// Stochastic Galerkin
//
#ifdef ALBANY_SG
InArgs::sg_const_vector_t x_sg = inArgs.get_x_sg();
if (x_sg != Teuchos::null) {
app->init_sg(inArgs.get_sg_basis(),
inArgs.get_sg_quadrature(),
inArgs.get_sg_expansion(),
x_sg->productComm());
InArgs::sg_const_vector_t x_dot_sg = Teuchos::null;
InArgs::sg_const_vector_t x_dot_sg = Teuchos::null;
if(num_time_deriv > 0)
x_dotdot_sg = inArgs.get_x_dotdot_sg();
if(num_time_deriv > 1)
x_dotdot_sg = inArgs.get_x_dotdot_sg();
if (x_dot_sg != Teuchos::null || x_dotdot_sg != Teuchos::null) {
alpha = inArgs.get_alpha();
beta = inArgs.get_beta();
curr_time = inArgs.get_t();
}
if (x_dotdot_sg != Teuchos::null) {
omega = inArgs.get_omega();
}
InArgs::sg_const_vector_t epetra_p_sg = inArgs.get_p_sg(0);
Teuchos::Array<int> p_sg_index;
for (int i=0; i<num_param_vecs; i++) {
InArgs::sg_const_vector_t p_sg = inArgs.get_p_sg(i);
if (p_sg != Teuchos::null) {
p_sg_index.push_back(i);
for (int j=0; j<p_sg_vals[i].size(); j++) {
int num_sg_blocks = p_sg->size();
p_sg_vals[i][j].reset(app->getStochasticExpansion(), num_sg_blocks);
p_sg_vals[i][j].copyForWrite();
for (int l=0; l<num_sg_blocks; l++) {
p_sg_vals[i][j].fastAccessCoeff(l) = (*p_sg)[l][j];
}
}
示例4: x
void
MockModelEval_D::
evalModel(const InArgs& inArgs, const OutArgs& outArgs) const
{
int proc = comm->MyPID();
//
// Deterministic calculation
//
// Parse InArgs
RCP<const Epetra_Vector> p1_in = inArgs.get_p(0);
if (p1_in == Teuchos::null)
p1_in = p1_init;
RCP<const Epetra_Vector> p2_in = inArgs.get_p(1);
if (p2_in == Teuchos::null)
p2_in = p2_init;
RCP<const Epetra_Vector> x_in = inArgs.get_x();
// Parse OutArgs
RCP<Epetra_Vector> f_out = outArgs.get_f();
if (f_out != Teuchos::null) {
double p = (*p1_in)[0];
double xi = (*p2_in)[0];
if (proc == 0) {
double x = (*x_in)[0];
(*f_out)[0] = x - p + xi;
}
}
RCP<Epetra_CrsMatrix> W_out =
Teuchos::rcp_dynamic_cast<Epetra_CrsMatrix>(outArgs.get_W());
if (W_out != Teuchos::null) {
if (proc == 0) {
double val = 1.0;
int i = 0;
W_out->ReplaceMyValues(i, 1, &val, &i);
}
}
RCP<Epetra_MultiVector> dfdp1 = outArgs.get_DfDp(0).getMultiVector();
if (dfdp1 != Teuchos::null) {
if (proc == 0)
(*dfdp1)[0][0] = -1.0;
}
RCP<Epetra_MultiVector> dfdp2 = outArgs.get_DfDp(1).getMultiVector();
if (dfdp2 != Teuchos::null) {
if (proc == 0)
(*dfdp2)[0][0] = 1.0;
}
RCP<Epetra_Vector> g_out = outArgs.get_g(0);
if (g_out != Teuchos::null) {
if (proc == 0) {
double x = (*x_in)[0];
(*g_out)[0] = 1.0 / x;
}
}
RCP<Epetra_MultiVector> dgdx = outArgs.get_DgDx(0).getMultiVector();
if (dgdx != Teuchos::null) {
if (proc == 0) {
double x = (*x_in)[0];
(*dgdx)[0][0] = -1.0 / (x*x);
}
}
RCP<Epetra_MultiVector> dgdp1 = outArgs.get_DgDp(0,0).getMultiVector();
if (dgdp1 != Teuchos::null) {
if (proc == 0) {
(*dgdp1)[0][0] = 0.0;
}
}
RCP<Epetra_MultiVector> dgdp2 = outArgs.get_DgDp(0,1).getMultiVector();
if (dgdp2 != Teuchos::null) {
if (proc == 0) {
(*dgdp2)[0][0] = 0.0;
}
}
//
// Stochastic calculation
//
#ifdef Piro_ENABLE_Stokhos
// Parse InArgs
RCP<const Stokhos::OrthogPolyBasis<int,double> > basis =
inArgs.get_sg_basis();
RCP<Stokhos::OrthogPolyExpansion<int,double> > expn =
inArgs.get_sg_expansion();
InArgs::sg_const_vector_t x_sg = inArgs.get_x_sg();
InArgs::sg_const_vector_t p1_sg = inArgs.get_p_sg(0);
InArgs::sg_const_vector_t p2_sg = inArgs.get_p_sg(1);
// Parse OutArgs
OutArgs::sg_vector_t f_sg = outArgs.get_f_sg();
if (f_sg != Teuchos::null && proc == 0) {
for (int block=0; block<f_sg->size(); block++) {
//.........这里部分代码省略.........