本文整理汇总了C++中ImmVector类的典型用法代码示例。如果您正苦于以下问题:C++ ImmVector类的具体用法?C++ ImmVector怎么用?C++ ImmVector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ImmVector类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: instrNumPops
/**
* instrNumPops() returns the number of values consumed from the stack
* for a given push/pop instruction. For peek/poke instructions, this
* function returns 0.
*/
int instrNumPops(PC pc) {
static const int32_t numberOfPops[] = {
#define NOV 0
#define ONE(...) 1
#define TWO(...) 2
#define THREE(...) 3
#define FOUR(...) 4
#define MMANY -1
#define C_MMANY -2
#define V_MMANY -2
#define R_MMANY -2
#define MFINAL -3
#define FMANY -3
#define CVMANY -3
#define CVUMANY -3
#define CMANY -3
#define SMANY -1
#define IDX_A -4
#define O(name, imm, pop, push, flags) pop,
OPCODES
#undef NOV
#undef ONE
#undef TWO
#undef THREE
#undef FOUR
#undef MMANY
#undef C_MMANY
#undef V_MMANY
#undef R_MMANY
#undef MFINAL
#undef FMANY
#undef CVMANY
#undef CVUMANY
#undef CMANY
#undef SMANY
#undef IDX_A
#undef O
};
int n = numberOfPops[size_t(peek_op(pc))];
// For most instructions, we know how many values are popped based
// solely on the opcode
if (n >= 0) return n;
// BaseSC and BaseSL remove an A that may be on the top of the stack or one
// element below the top, depending on the second immediate.
if (n == -4) return getImm(pc, 1).u_IVA + 1;
// FCall, NewPackedArray, and final member operations specify how many values
// are popped in their first immediate
if (n == -3) return getImm(pc, 0).u_IVA;
// For instructions with vector immediates, we have to scan the
// contents of the vector immediate to determine how many values
// are popped
assert(n == -1 || n == -2);
ImmVector iv = getImmVector(pc);
// Count the number of values on the stack accounted for by the
// ImmVector's location and members
int k = iv.numStackValues();
// If this instruction also takes a RHS, count that too
if (n == -2) ++k;
return k;
}
示例2: instrNumPops
/**
* instrNumPops() returns the number of values consumed from the stack
* for a given push/pop instruction. For peek/poke instructions, this
* function returns 0.
*/
int instrNumPops(PC pc) {
static const int32_t numberOfPops[] = {
#define NOV 0
#define ONE(...) 1
#define TWO(...) 2
#define THREE(...) 3
#define FOUR(...) 4
#define MFINAL -3
#define F_MFINAL -6
#define C_MFINAL -5
#define V_MFINAL C_MFINAL
#define FMANY -3
#define CVUMANY -3
#define CMANY -3
#define SMANY -1
#define IDX_A -4
#define O(name, imm, pop, push, flags) pop,
OPCODES
#undef NOV
#undef ONE
#undef TWO
#undef THREE
#undef FOUR
#undef MFINAL
#undef F_MFINAL
#undef C_MFINAL
#undef V_MFINAL
#undef FMANY
#undef CVUMANY
#undef CMANY
#undef SMANY
#undef IDX_A
#undef O
};
auto const op = peek_op(pc);
int n = numberOfPops[size_t(op)];
// For most instructions, we know how many values are popped based
// solely on the opcode
if (n >= 0) return n;
// BaseSC and BaseSL remove an A that may be on the top of the stack or one
// element below the top, depending on the second immediate.
if (n == -4) return getImm(pc, 1).u_IVA + 1;
// FCall, NewPackedArray, and some final member operations specify how many
// values are popped in their first immediate
if (n == -3) return getImm(pc, 0).u_IVA;
// FPassM final operations have paramId as imm 0 and stackCount as imm1
if (n == -6) return getImm(pc, 1).u_IVA;
// Other final member operations pop their first immediate + 1
if (n == -5) return getImm(pc, 0).u_IVA + 1;
// For instructions with vector immediates, we have to scan the contents of
// the vector immediate to determine how many values are popped
assert(n == -1);
ImmVector iv = getImmVector(pc);
int k = iv.numStackValues();
return k;
}
示例3: instrNumPops
/**
* instrNumPops() returns the number of values consumed from the stack
* for a given push/pop instruction. For peek/poke instructions, this
* function returns 0.
*/
int instrNumPops(PC pc) {
static const int32_t numberOfPops[] = {
#define NOV 0
#define ONE(...) 1
#define TWO(...) 2
#define THREE(...) 3
#define FOUR(...) 4
#define MFINAL -3
#define F_MFINAL -6
#define C_MFINAL -5
#define V_MFINAL C_MFINAL
#define FMANY -3
#define UFMANY -4
#define CVUMANY -3
#define CMANY -3
#define SMANY -1
#define O(name, imm, pop, push, flags) pop,
OPCODES
#undef NOV
#undef ONE
#undef TWO
#undef THREE
#undef FOUR
#undef MFINAL
#undef F_MFINAL
#undef C_MFINAL
#undef V_MFINAL
#undef FMANY
#undef UFMANY
#undef CVUMANY
#undef CMANY
#undef SMANY
#undef O
};
auto const op = peek_op(pc);
int n = numberOfPops[size_t(op)];
// For most instructions, we know how many values are popped based
// solely on the opcode
if (n >= 0) return n;
// FCall, NewPackedArray, and some final member operations specify how many
// values are popped in their first immediate
if (n == -3) return getImm(pc, 0).u_IVA;
// FCallM, FCallDM, and FCallUnpackM pop uninit values from the stack and
// push multiple returned values.
if (n == -4) return getImm(pc, 0).u_IVA + getImm(pc, 1).u_IVA - 1;
// FPassM final operations have paramId as imm 0 and stackCount as imm1
if (n == -6) return getImm(pc, 1).u_IVA;
// Other final member operations pop their first immediate + 1
if (n == -5) return getImm(pc, 0).u_IVA + 1;
// For instructions with vector immediates, we have to scan the contents of
// the vector immediate to determine how many values are popped
assertx(n == -1);
ImmVector iv = getImmVector(pc);
int k = iv.numStackValues();
return k;
}
示例4: instrNumPops
/**
* instrNumPops() returns the number of values consumed from the stack
* for a given push/pop instruction. For peek/poke instructions, this
* function returns 0.
*/
int instrNumPops(PC pc) {
static const int32_t numberOfPops[] = {
#define NOV 0
#define ONE(...) 1
#define TWO(...) 2
#define THREE(...) 3
#define FOUR(...) 4
#define FIVE(...) 5
#define MFINAL -3
#define C_MFINAL -5
#define V_MFINAL C_MFINAL
#define CVMANY -3
#define CVUMANY -3
#define FCALL -4
#define CMANY -3
#define SMANY -1
#define O(name, imm, pop, push, flags) pop,
OPCODES
#undef NOV
#undef ONE
#undef TWO
#undef THREE
#undef FOUR
#undef FIVE
#undef MFINAL
#undef C_MFINAL
#undef V_MFINAL
#undef CVMANY
#undef CVUMANY
#undef FCALL
#undef CMANY
#undef SMANY
#undef O
};
auto const op = peek_op(pc);
int n = numberOfPops[size_t(op)];
// For most instructions, we know how many values are popped based
// solely on the opcode
if (n >= 0) return n;
// FCallAwait, NewPackedArray, and some final member operations specify how
// many values are popped in their first immediate
if (n == -3) return getImm(pc, 0).u_IVA;
// FCall pops numArgs, unpack and (numRets - 1) uninit values
if (n == -4) {
auto const fca = getImm(pc, 0).u_FCA;
return fca.numArgs + (fca.hasUnpack ? 1 : 0) + fca.numRets - 1;
}
// Other final member operations pop their first immediate + 1
if (n == -5) return getImm(pc, 0).u_IVA + 1;
// For instructions with vector immediates, we have to scan the contents of
// the vector immediate to determine how many values are popped
assertx(n == -1);
ImmVector iv = getImmVector(pc);
int k = iv.numStackValues();
return k;
}
示例5: instrNumPops
/**
* instrNumPops() returns the number of values consumed from the stack
* for a given push/pop instruction. For peek/poke instructions, this
* function returns 0.
*/
int instrNumPops(const Op* opcode) {
static const int8_t numberOfPops[] = {
#define NOV 0
#define ONE(...) 1
#define TWO(...) 2
#define THREE(...) 3
#define FOUR(...) 4
#define MMANY -1
#define C_MMANY -2
#define V_MMANY -2
#define R_MMANY -2
#define FMANY -3
#define CVMANY -3
#define CVUMANY -3
#define CMANY -3
#define SMANY -1
#define O(name, imm, pop, push, flags) pop,
OPCODES
#undef NOV
#undef ONE
#undef TWO
#undef THREE
#undef FOUR
#undef MMANY
#undef C_MMANY
#undef V_MMANY
#undef R_MMANY
#undef FMANY
#undef CVMANY
#undef CVUMANY
#undef CMANY
#undef SMANY
#undef O
};
int n = numberOfPops[uint8_t(*opcode)];
// For most instructions, we know how many values are popped based
// solely on the opcode
if (n >= 0) return n;
// FCall and NewPackedArray specify how many values are popped in their
// first immediate
if (n == -3) return getImm(opcode, 0).u_IVA;
// For instructions with vector immediates, we have to scan the
// contents of the vector immediate to determine how many values
// are popped
assert(n == -1 || n == -2);
ImmVector iv = getImmVector(opcode);
// Count the number of values on the stack accounted for by the
// ImmVector's location and members
int k = iv.numStackValues();
// If this instruction also takes a RHS, count that too
if (n == -2) ++k;
return k;
}
示例6: emitIterBreak
void emitIterBreak(IRGS& env, Offset relOffset, const ImmVector& iv) {
for (int iterIndex = 0; iterIndex < iv.size(); iterIndex += 2) {
IterKind iterKind = (IterKind)iv.vec32()[iterIndex];
Id iterId = iv.vec32()[iterIndex + 1];
switch (iterKind) {
case KindOfIter: gen(env, IterFree, IterId(iterId), fp(env)); break;
case KindOfMIter: gen(env, MIterFree, IterId(iterId), fp(env)); break;
case KindOfCIter: gen(env, CIterFree, IterId(iterId), fp(env)); break;
}
}
jmpImpl(env, bcOff(env) + relOffset);
}
示例7: emitIterBreak
void emitIterBreak(IRGS& env,
const ImmVector& iv,
Offset relOffset) {
always_assert(env.currentNormalizedInstruction->endsRegion);
for (int iterIndex = 0; iterIndex < iv.size(); iterIndex += 2) {
IterKind iterKind = (IterKind)iv.vec32()[iterIndex];
Id iterId = iv.vec32()[iterIndex + 1];
switch (iterKind) {
case KindOfIter: gen(env, IterFree, IterId(iterId), fp(env)); break;
case KindOfMIter: gen(env, MIterFree, IterId(iterId), fp(env)); break;
case KindOfCIter: gen(env, CIterFree, IterId(iterId), fp(env)); break;
}
}
// Would need to change this if we support not ending regions on this:
gen(env, Jmp, makeExit(env, bcOff(env) + relOffset));
}
示例8: instrNumPops
/**
* instrNumPops() returns the number of values consumed from the stack
* for a given push/pop instruction. For peek/poke instructions, this
* function returns 0.
*/
int instrNumPops(const Opcode* opcode) {
static const int8_t numberOfPops[] = {
#define NOV 0
#define ONE(...) 1
#define TWO(...) 2
#define THREE(...) 3
#define LMANY(...) -1
#define C_LMANY(...) -2
#define V_LMANY(...) -2
#define FMANY -3
#define O(name, imm, pop, push, flags) pop,
OPCODES
#undef NOV
#undef ONE
#undef TWO
#undef THREE
#undef LMANY
#undef C_LMANY
#undef V_LMANY
#undef FMANY
#undef O
};
int n = numberOfPops[*opcode];
// For most instructions, we know how many values are popped based
// solely on the opcode
if (n >= 0) return n;
// FCall specifies how many values are popped in its first immediate
if (n == -3) return getImm(opcode, 0).u_IVA;
// For instructions with vector immediates, we have to scan the
// contents of the vector immediate to determine how many values
// are popped
ASSERT(n == -1 || n == -2);
ImmVector iv = getImmVector(opcode);
// Count the number of values on the stack accounted for by the
// ImmVector's location and members
int k = iv.numStackValues();
// If this instruction also takes a RHS, count that too
if (n == -2) ++k;
return k;
}
示例9: emitNewStructArray
void emitNewStructArray(HTS& env, const ImmVector& immVec) {
auto const numArgs = immVec.size();
auto const ids = immVec.vec32();
// The NewPackedArray opcode's helper needs array values passed to it
// via the stack. We use spillStack() to flush the eval stack and
// obtain a pointer to the topmost item; if over-flushing becomes
// a problem then we should refactor the NewPackedArray opcode to
// take its values directly as SSA operands.
spillStack(env);
NewStructData extra;
extra.offset = offsetFromSP(env, 0);
extra.numKeys = numArgs;
extra.keys = new (env.unit.arena()) StringData*[numArgs];
for (auto i = size_t{0}; i < numArgs; ++i) {
extra.keys[i] = curUnit(env)->lookupLitstrId(ids[i]);
}
discard(env, numArgs);
push(env, gen(env, NewStructArray, extra, sp(env)));
}
示例10: emitSSwitch
void emitSSwitch(HTS& env, const ImmVector& iv) {
const int numCases = iv.size() - 1;
/*
* We use a fast path translation with a hashtable if none of the
* cases are numeric strings and if the input is actually a string.
*
* Otherwise we do a linear search through the cases calling string
* conversion routines.
*/
const bool fastPath =
topC(env)->isA(Type::Str) &&
std::none_of(iv.strvec(), iv.strvec() + numCases,
[&](const StrVecItem& item) {
return curUnit(env)->lookupLitstrId(item.str)->isNumeric();
}
);
auto const testVal = popC(env);
std::vector<LdSSwitchData::Elm> cases(numCases);
for (int i = 0; i < numCases; ++i) {
auto const& kv = iv.strvec()[i];
cases[i].str = curUnit(env)->lookupLitstrId(kv.str);
cases[i].dest = SrcKey{curSrcKey(env), bcOff(env) + kv.dest};
}
LdSSwitchData data;
data.numCases = numCases;
data.cases = &cases[0];
data.defaultSk = SrcKey{curSrcKey(env),
bcOff(env) + iv.strvec()[iv.size() - 1].dest};
auto const dest = gen(env,
fastPath ? LdSSwitchDestFast
: LdSSwitchDestSlow,
data,
testVal);
gen(env, DecRef, testVal);
gen(env, AdjustSP, IRSPOffsetData { offsetFromIRSP(env, BCSPOffset{0}) },
sp(env));
gen(env, JmpSSwitchDest, dest, sp(env));
}
示例11: emitSwitch
void emitSwitch(HTS& env,
const ImmVector& iv,
int64_t base,
int32_t bounded) {
int nTargets = bounded ? iv.size() - 2 : iv.size();
SSATmp* const switchVal = popC(env);
Type type = switchVal->type();
assert(IMPLIES(!(type <= Type::Int), bounded));
assert(IMPLIES(bounded, iv.size() > 2));
SSATmp* index;
SSATmp* ssabase = cns(env, base);
SSATmp* ssatargets = cns(env, nTargets);
Offset defaultOff = bcOff(env) + iv.vec32()[iv.size() - 1];
Offset zeroOff = 0;
if (base <= 0 && (base + nTargets) > 0) {
zeroOff = bcOff(env) + iv.vec32()[0 - base];
} else {
zeroOff = defaultOff;
}
if (type <= Type::Null) {
gen(env, Jmp, makeExit(env, zeroOff));
return;
}
if (type <= Type::Bool) {
Offset nonZeroOff = bcOff(env) + iv.vec32()[iv.size() - 2];
gen(env, JmpNZero, makeExit(env, nonZeroOff), switchVal);
gen(env, Jmp, makeExit(env, zeroOff));
return;
}
if (type <= Type::Int) {
// No special treatment needed
index = switchVal;
} else if (type <= Type::Dbl) {
// switch(Double|String|Obj)Helper do bounds-checking for us, so
// we need to make sure the default case is in the jump table,
// and don't emit our own bounds-checking code
bounded = false;
index = gen(env, LdSwitchDblIndex, switchVal, ssabase, ssatargets);
} else if (type <= Type::Str) {
bounded = false;
index = gen(env, LdSwitchStrIndex, switchVal, ssabase, ssatargets);
} else if (type <= Type::Obj) {
// switchObjHelper can throw exceptions and reenter the VM so we use the
// catch block here.
bounded = false;
index = gen(env, LdSwitchObjIndex, switchVal, ssabase, ssatargets);
} else if (type <= Type::Arr) {
gen(env, DecRef, switchVal);
gen(env, Jmp, makeExit(env, defaultOff));
return;
} else {
PUNT(Switch-UnknownType);
}
std::vector<Offset> targets(iv.size());
for (int i = 0; i < iv.size(); i++) {
targets[i] = bcOff(env) + iv.vec32()[i];
}
JmpSwitchData data;
data.base = base;
data.bounded = bounded;
data.cases = iv.size();
data.defaultOff = defaultOff;
data.targets = &targets[0];
spillStack(env);
gen(env, AdjustSP, StackOffset { offsetFromSP(env, 0) }, sp(env));
gen(env, JmpSwitchDest, data, index, sp(env));
}