本文整理汇总了C++中ISamples类的典型用法代码示例。如果您正苦于以下问题:C++ ISamples类的具体用法?C++ ISamples怎么用?C++ ISamples使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ISamples类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: init_conf_mat
void Evaluation::init_conf_mat (ISamples &samples) {
_n_classes = samples.getClassSize ();
// store class names
_class_names = new ssi_char_t *[_n_classes];
for (ssi_size_t i = 0; i < _n_classes; i++) {
_class_names[i] = ssi_strcpy (samples.getClassName (i));
}
// allocate confussion matrix
_conf_mat_ptr = new ssi_size_t *[_n_classes];
_conf_mat_data = new ssi_size_t[_n_classes * _n_classes];
for (ssi_size_t i = 0; i < _n_classes; ++i) {
_conf_mat_ptr[i] = _conf_mat_data + i*_n_classes;
}
// set all elements in the confussion matrix to zero
for (ssi_size_t i = 0; i < _n_classes; ++i) {
for (ssi_size_t j = 0; j < _n_classes; ++j) {
_conf_mat_ptr[i][j] = 0;
}
}
_n_unclassified = 0;
_n_classified = 0;
}
示例2: samples_s
void AlgLibTools::Samples2matrix (
ISamples &samples,
ssi_size_t stream_id,
ssi_size_t class_id,
ae_matrix* m,
ae_state *state)
{
ae_int_t nfeatures = samples.get (0)->streams[stream_id]->dim;
ae_int_t nsamples = samples.getSize (class_id);
ae_int_t i = 0;
ae_int_t j = 0;
ae_matrix_clear(m);
ae_matrix_set_length(m, nsamples, nfeatures, state);
ssi_sample_t *sample;
ISSelectClass samples_s (&samples);
samples_s.setSelection (class_id);
samples_s.reset ();
while (sample = samples_s.next ()) {
ssi_real_t *ptr = ssi_pcast (ssi_real_t, sample->streams[stream_id]->ptr);
for(j=0; j<=nfeatures-1; j++)
{
m->ptr.pp_double[i][j] = ssi_cast (double, *ptr++);
}
i++;
}
}
示例3: train
bool MyFusion::train (ssi_size_t n_models,
IModel **models,
ISamples &samples) {
if (samples.getSize () == 0) {
ssi_wrn ("empty sample list");
return false;
}
if (isTrained ()) {
ssi_wrn ("already trained");
return false;
}
ssi_size_t n_streams = samples.getStreamSize ();
if (n_streams != n_models) {
ssi_err ("#models (%u) differs from #streams (%u)", n_models, n_streams);
}
for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
if (!models[n_model]->isTrained ()) {
models[n_model]->train (samples, n_model);
}
}
_is_trained = true;
return true;
}
示例4:
void AlgLibTools::Samples2MatrixWithClass (ISamples &samples,
ssi_size_t stream_id, ae_matrix* m) {
ae_int_t nfeatures = samples.get (0)->streams[stream_id]->dim;
ae_int_t nsamples = samples.getSize ();
ae_int_t i = 0;
ae_int_t j = 0;
ae_state state;
ae_matrix_clear(m);
ae_matrix_set_length(m, nsamples, nfeatures+1, &state);
ssi_sample_t *sample;
samples.reset ();
while (sample = samples.next ()) {
ssi_real_t *ptr = ssi_pcast (ssi_real_t, sample->streams[stream_id]->ptr);
for (j = 0; j <= nfeatures-1; j++)
{
m->ptr.pp_double[i][j] = ssi_cast (double, *ptr++);
}
m->ptr.pp_double[i][j] = ssi_cast (double, sample->class_id);
i++;
}
//delete sample;
}
示例5: build
bool Fisher::build (ISamples &samples, ssi_size_t stream_index) {
if (samples.getSize () == 0) {
ssi_wrn ("empty sample list");
return false;
}
if (isBuild ()) {
ssi_wrn ("already trained");
return false;
}
ae_state state;
ae_int_t info;
ae_matrix data;
ae_matrix_init (&data, 0, 0, DT_REAL, &state, ae_true);
// convert the samples to a matrix where the last column holds the class number to which the sample belongs
AlgLibTools::Samples2MatrixWithClass(samples, 0, &data);
_basis = new ae_matrix;
ae_matrix_init (_basis, 0, 0, DT_REAL, &state, ae_true);
fisherldan(&data,data.rows,data.cols-1 , samples.getClassSize(),&info,_basis,&state);
ae_matrix_clear (&data);
_is_build = true;
return true;
}
示例6: norm
void ISNorm::norm (ISamples &samples) {
samples.reset ();
ssi_sample_t *sample = 0;
while (sample = samples.next ()) {
norm (*sample);
}
}
示例7: write
bool FileSamplesOut::write (ISamples &data) {
data.reset ();
ssi_sample_t *sample = 0;
while (sample = data.next ()) {
write (*sample);
}
return true;
}
示例8: evalLOUO
void Evaluation::evalLOUO (Trainer *trainer, ISamples &samples){
_trainer = trainer;
destroy_conf_mat ();
init_conf_mat (samples);
ssi_size_t n_users = samples.getUserSize ();
_n_total = samples.getSize ();
_result_vec = new ssi_size_t[2*_n_total];
_result_vec_ptr = _result_vec;
ssi_size_t itest = 0;
ssi_size_t *itrain = new ssi_size_t[n_users - 1];
for (ssi_size_t nuser = 0; nuser < n_users - 1; ++nuser) {
itrain[nuser] = nuser+1;
}
ISSelectUser strain (&samples);
ISSelectUser stest (&samples);
strain.setSelection (n_users-1, itrain);
stest.setSelection (1, &itest);
_trainer->release ();
if (_fselmethod) {
_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
}
if (_preproc_mode) {
_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
}
_trainer->train (strain);
eval_h (stest);
for (ssi_size_t nuser = 1; nuser < n_users; ++nuser) {
itrain[nuser-1] = nuser-1;
itest = nuser;
strain.setSelection (n_users-1, itrain);
stest.setSelection (1, &itest);
_trainer->release ();
if (_fselmethod) {
_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
}
if (_preproc_mode) {
_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
}
_trainer->train (strain);
eval_h (stest);
}
delete [] itrain;
}
示例9: eval
void Evaluation::eval (IFusion &fusion, ssi_size_t n_models, IModel **models, ISamples &samples) {
// init confussion matrix
_trainer = 0;
destroy_conf_mat ();
init_conf_mat (samples);
ssi_size_t n_classes = samples.getClassSize ();
ssi_real_t *probs = new ssi_real_t[n_classes];
_n_total = samples.getSize ();
_result_vec = new ssi_size_t[2*_n_total];
_result_vec_ptr = _result_vec;
samples.reset ();
const ssi_sample_t *sample = 0;
while (sample = samples.next ()) {
ssi_size_t real_index = sample->class_id;
*_result_vec_ptr++ = real_index;
if (fusion.forward (n_models, models, sample->num, sample->streams, n_classes, probs)) {
ssi_size_t max_ind = 0;
ssi_real_t max_val = probs[0];
for (ssi_size_t i = 1; i < n_classes; i++) {
if (probs[i] > max_val) {
max_val = probs[i];
max_ind = i;
}
}
*_result_vec_ptr++ = max_ind;
_conf_mat_ptr[real_index][max_ind]++;
_n_classified++;
} else if (!_allow_unclassified) {
ssi_size_t max_ind = _default_class_id;
*_result_vec_ptr++ = max_ind;
_conf_mat_ptr[real_index][max_ind]++;
_n_classified++;
} else {
*_result_vec_ptr++ = SSI_ISAMPLES_GARBAGE_CLASS_ID;
_n_unclassified++;
}
}
delete[] probs;
}
示例10: train
bool SimpleFusion::train (ssi_size_t n_models,
IModel **models,
ISamples &samples) {
if (samples.getSize () == 0) {
ssi_wrn ("empty sample list");
return false;
}
if (isTrained ()) {
ssi_wrn ("already trained");
return false;
}
ssi_size_t n_streams = samples.getStreamSize ();
if (n_streams != 1 && n_streams != n_models) {
ssi_err ("#models (%u) differs from #streams (%u)", n_models, n_streams);
}
if (samples.hasMissingData ()) {
ISMissingData samples_h (&samples);
for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
if (!models[n_model]->isTrained ()) {
samples_h.setStream(n_streams == 1 ? 0 : n_model);
models[n_model]->train (samples_h, n_model);
}
}
} else {
for (ssi_size_t n_model = 0; n_model < n_models; n_model++) {
if (!models[n_model]->isTrained ()) {
models[n_model]->train(samples, n_streams == 1 ? 0 : n_model);
}
}
}
_is_trained = true;
return true;
}
示例11: eval_h
void Evaluation::eval_h (ISamples &samples) {
// walk through sample list and test trainer against each sample
samples.reset ();
const ssi_sample_t *sample = 0;
ssi_size_t index, real_index;
while (sample = samples.next ()) {
real_index = sample->class_id;
*_result_vec_ptr++ = real_index;
if (_trainer->forward (sample->num, sample->streams, index)) {
*_result_vec_ptr++ = index;
_conf_mat_ptr[real_index][index]++;
_n_classified++;
} else if (!_allow_unclassified) {
index = _default_class_id;
*_result_vec_ptr++ = index;
_conf_mat_ptr[real_index][index]++;
_n_classified++;
} else {
*_result_vec_ptr++ = SSI_ISAMPLES_GARBAGE_CLASS_ID;
_n_unclassified++;
}
}
}
示例12: evalSplit
void Evaluation::evalSplit (Trainer *trainer, ISamples &samples, ssi_real_t split) {
if (split <= 0 || split >= 1) {
ssi_err ("split must be a value between 0 and 1");
}
_trainer = trainer;
destroy_conf_mat ();
init_conf_mat (samples);
ssi_size_t *indices = new ssi_size_t[samples.getSize ()];
ssi_size_t *indices_count_lab = new ssi_size_t[samples.getClassSize ()];
ssi_size_t indices_count_all;
indices_count_all = 0;
for (ssi_size_t j = 0; j < samples.getClassSize (); j++) {
indices_count_lab[j] = 0;
}
ssi_size_t label;
ssi_size_t label_size;
for (ssi_size_t j = 0; j < samples.getSize (); j++) {
label = samples.get (j)->class_id;
label_size = samples.getSize (label);
if (++indices_count_lab[label] <= ssi_cast (ssi_size_t, label_size * split + 0.5f)) {
indices[indices_count_all++] = j;
}
}
SampleList strain;
SampleList stest;
// split off samples
ModelTools::SelectSampleList (samples, strain, stest, indices_count_all, indices);
_n_total = stest.getSize ();
_result_vec = new ssi_size_t[2*_n_total];
_result_vec_ptr = _result_vec;
// train with remaining samples
_trainer->release ();
if (_preproc_mode) {
_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
} else if (_fselmethod) {
_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
}
_trainer->train (strain);
// test with remaining samples
eval_h (stest);
delete[] indices;
delete[] indices_count_lab;
}
示例13: evalKFold
void Evaluation::evalKFold (Trainer *trainer, ISamples &samples, ssi_size_t k) {
// init confussion matrix
_trainer = trainer;
destroy_conf_mat ();
init_conf_mat (samples);
_n_total = samples.getSize ();
_result_vec = new ssi_size_t[2*_n_total];
_result_vec_ptr = _result_vec;
ssi_size_t *indices = new ssi_size_t[samples.getSize ()];
ssi_size_t *indices_count_lab = new ssi_size_t[samples.getClassSize ()];
ssi_size_t indices_count_all;
for (ssi_size_t i = 0; i < k; ++i) {
indices_count_all = 0;
for (ssi_size_t j = 0; j < samples.getClassSize (); j++) {
indices_count_lab[j] = 0;
}
ssi_size_t label;
for (ssi_size_t j = 0; j < samples.getSize (); j++) {
label = samples.get (j)->class_id;
if (++indices_count_lab[label] % k == i) {
indices[indices_count_all++] = j;
}
}
SampleList strain;
SampleList stest;
// split off i'th fold
ModelTools::SelectSampleList (samples, stest, strain, indices_count_all, indices);
// train with i'th fold
_trainer->release ();
if (_fselmethod) {
_trainer->setSelection (strain, _fselmethod, _pre_fselmethod, _n_pre_feature);
}
if (_preproc_mode) {
_trainer->setPreprocMode (_preproc_mode, _n_streams_refs, _stream_refs);
}
_trainer->train (strain);
// test with remaining samples
eval_h (stest);
}
delete[] indices;
delete[] indices_count_lab;
}
示例14: train
bool Rank::train (ISamples &samples,
ssi_size_t stream_index) {
if (!_model) {
ssi_wrn ("a model has not been set yet");
return false;
}
release ();
_n_scores = samples.getStream (stream_index).dim;
_scores = new score[_n_scores];
Evaluation eval;
Trainer trainer (_model, stream_index);
SSI_DBG (SSI_LOG_LEVEL_DEBUG, "evaluate dimensions:");
for (ssi_size_t ndim = 0; ndim < _n_scores; ndim++) {
ISSelectDim samples_s (&samples);
samples_s.setSelection (stream_index, 1, &ndim);
if (_options.loo) {
eval.evalLOO (&trainer, samples_s);
} else if (_options.louo) {
eval.evalLOUO (&trainer, samples_s);
} else {
eval.evalKFold (&trainer, samples_s, _options.kfold);
}
_scores[ndim].index = ndim;
_scores[ndim].value = eval.get_classwise_prob ();
SSI_DBG (SSI_LOG_LEVEL_DEBUG, " #%02u -> %.2f", _scores[ndim].index, _scores[ndim].value);
}
trainer.release ();
return true;
}
示例15: train
bool SimpleKNN::train (ISamples &samples,
ssi_size_t stream_index) {
if (samples.getSize () == 0) {
ssi_wrn ("empty sample list");
return false;
}
if (samples.getSize () < _options.k) {
ssi_wrn ("sample list has less than '%u' entries", _options.k);
return false;
}
if (isTrained ()) {
ssi_wrn ("already trained");
return false;
}
_n_classes = samples.getClassSize ();
_n_samples = samples.getSize ();
_n_features = samples.getStream (stream_index).dim;
_data = new ssi_real_t[_n_features*_n_samples];
_classes = new ssi_size_t[_n_samples];
ssi_sample_t *sample;
samples.reset ();
ssi_real_t *data_ptr = _data;
ssi_size_t *class_ptr = _classes;
ssi_stream_t *stream_ptr = 0;
ssi_size_t bytes_to_copy = _n_features * sizeof (ssi_real_t);
while (sample = samples.next ()) {
memcpy (data_ptr, sample->streams[stream_index]->ptr, bytes_to_copy);
*class_ptr++ = sample->class_id;
data_ptr += _n_features;
}
return true;
}