当前位置: 首页>>代码示例>>C++>>正文


C++ HardwareIndexBufferSharedPtr::writeData方法代码示例

本文整理汇总了C++中HardwareIndexBufferSharedPtr::writeData方法的典型用法代码示例。如果您正苦于以下问题:C++ HardwareIndexBufferSharedPtr::writeData方法的具体用法?C++ HardwareIndexBufferSharedPtr::writeData怎么用?C++ HardwareIndexBufferSharedPtr::writeData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在HardwareIndexBufferSharedPtr的用法示例。


在下文中一共展示了HardwareIndexBufferSharedPtr::writeData方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: createPlane

	//---------------------------------------------------------------------
	void PrefabFactory::createPlane(Mesh* mesh)
	{
		SubMesh* sub = mesh->createSubMesh();
		float vertices[32] = {
			-100, -100, 0,	// pos
			0,0,1,			// normal
			0,1,			// texcoord
			100, -100, 0,
			0,0,1,
			1,1,
			100,  100, 0,
			0,0,1,
			1,0,
			-100,  100, 0 ,
			0,0,1,
			0,0 
		};
		mesh->sharedVertexData = OGRE_NEW VertexData();
		mesh->sharedVertexData->vertexCount = 4;
		VertexDeclaration* decl = mesh->sharedVertexData->vertexDeclaration;
		VertexBufferBinding* bind = mesh->sharedVertexData->vertexBufferBinding;

		size_t offset = 0;
		decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
		offset += VertexElement::getTypeSize(VET_FLOAT3);
		decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
		offset += VertexElement::getTypeSize(VET_FLOAT3);
		decl->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
		offset += VertexElement::getTypeSize(VET_FLOAT2);

		HardwareVertexBufferSharedPtr vbuf = 
			HardwareBufferManager::getSingleton().createVertexBuffer(
			offset, 4, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
		bind->setBinding(0, vbuf);

		vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);

		sub->useSharedVertices = true;
		HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
			createIndexBuffer(
			HardwareIndexBuffer::IT_16BIT, 
			6, 
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

		unsigned short faces[6] = {0,1,2,
			0,2,3 };
		sub->indexData->indexBuffer = ibuf;
		sub->indexData->indexCount = 6;
		sub->indexData->indexStart =0;
		ibuf->writeData(0, ibuf->getSizeInBytes(), faces, true);

		mesh->_setBounds(AxisAlignedBox(-100,-100,0,100,100,0), true);
		mesh->_setBoundingSphereRadius(Math::Sqrt(100*100+100*100));
	}
开发者ID:terminus510,项目名称:OgreBulletTest,代码行数:55,代码来源:OgrePrefabFactory.cpp

示例2: initialise

void VolumeRenderable::initialise()
{
	// Create geometry
	size_t nvertices = mSlices*4; // n+1 planes
	size_t elemsize = 3*3;
	size_t dsize = elemsize*nvertices;
	size_t x;
	
	Ogre::IndexData *idata = new Ogre::IndexData();
	Ogre::VertexData *vdata = new Ogre::VertexData();
	
	// Create  structures
	float *vertices = new float[dsize];
	
	float coords[4][2] = {
		{0.0f, 0.0f},
		{0.0f, 1.0f},
		{1.0f, 0.0f},
		{1.0f, 1.0f}
	};
	for(x=0; x<mSlices; x++) 
	{
		for(size_t y=0; y<4; y++)
		{
			float xcoord = coords[y][0]-0.5;
			float ycoord = coords[y][1]-0.5;
			float zcoord = -((float)x/(float)(mSlices-1)  - 0.5f);
			// 1.0f .. a/(a+1)
			// coordinate
			vertices[x*4*elemsize+y*elemsize+0] = xcoord*(mSize/2.0f);
			vertices[x*4*elemsize+y*elemsize+1] = ycoord*(mSize/2.0f);
			vertices[x*4*elemsize+y*elemsize+2] = zcoord*(mSize/2.0f);
			// normal
			vertices[x*4*elemsize+y*elemsize+3] = 0.0f;
			vertices[x*4*elemsize+y*elemsize+4] = 0.0f;
			vertices[x*4*elemsize+y*elemsize+5] = 1.0f;
			// tex
			vertices[x*4*elemsize+y*elemsize+6] = xcoord*sqrtf(3.0f);
			vertices[x*4*elemsize+y*elemsize+7] = ycoord*sqrtf(3.0f);
			vertices[x*4*elemsize+y*elemsize+8] = zcoord*sqrtf(3.0f);
		} 
	}
	unsigned short *faces = new unsigned short[mSlices*6];
	for(x=0; x<mSlices; x++) 
	{
		faces[x*6+0] = x*4+0;
		faces[x*6+1] = x*4+1;
		faces[x*6+2] = x*4+2;
		faces[x*6+3] = x*4+1;
		faces[x*6+4] = x*4+2;
		faces[x*6+5] = x*4+3;
	}
	// Setup buffers
	vdata->vertexStart = 0;
	vdata->vertexCount = nvertices;
	
	VertexDeclaration* decl = vdata->vertexDeclaration;
	VertexBufferBinding* bind = vdata->vertexBufferBinding;

	size_t offset = 0;
	decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
	offset += VertexElement::getTypeSize(VET_FLOAT3);
	decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
	offset += VertexElement::getTypeSize(VET_FLOAT3);
	decl->addElement(0, offset, VET_FLOAT3, VES_TEXTURE_COORDINATES);
	offset += VertexElement::getTypeSize(VET_FLOAT3);

	HardwareVertexBufferSharedPtr vbuf = 
	HardwareBufferManager::getSingleton().createVertexBuffer(
		offset, nvertices, HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	bind->setBinding(0, vbuf);

	vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);
	
	HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
		createIndexBuffer(
			HardwareIndexBuffer::IT_16BIT, 
			mSlices*6, 
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	idata->indexBuffer = ibuf;
	idata->indexCount = mSlices*6;
	idata->indexStart = 0;
	ibuf->writeData(0, ibuf->getSizeInBytes(), faces, true);

	// Delete temporary buffers
	delete [] vertices;
	delete [] faces;
	
	// Now make the render operation
	mRenderOp.operationType = Ogre::RenderOperation::OT_TRIANGLE_LIST;
	mRenderOp.indexData = idata;
	mRenderOp.vertexData = vdata;
	mRenderOp.useIndexes = true;
	
	 // Create a brand new private material
	MaterialPtr material = 
		MaterialManager::getSingleton().create(mTexture, "VolumeRenderable",
			false, 0); // Manual, loader
//.........这里部分代码省略.........
开发者ID:Argos86,项目名称:dt2370,代码行数:101,代码来源:VolumeRenderable.cpp

示例3: idstart


//.........这里部分代码省略.........
		covertices[i*6+4 ].texcoord=Vector2((float)i/(float)nrays, 0.77f);
		covertices[i*6+5 ].texcoord=Vector2((float)i/(float)nrays, 1.00f);
	}

	/// Define triangles
	/// The values in this table refer to vertices in the above table
	ibufCount = 3*10*nrays;
	faces=(unsigned short*)malloc(ibufCount*sizeof(unsigned short));
	for (i=0; i<nrays; i++)
	{
		faces[3*(i*10  )]=i*6;   faces[3*(i*10  )+1]=i*6+1;     faces[3*(i*10  )+2]=(i+1)*6;
		faces[3*(i*10+1)]=i*6+1; faces[3*(i*10+1)+1]=(i+1)*6+1; faces[3*(i*10+1)+2]=(i+1)*6;

		faces[3*(i*10+2)]=i*6+1; faces[3*(i*10+2)+1]=i*6+2;     faces[3*(i*10+2)+2]=(i+1)*6+1;
		faces[3*(i*10+3)]=i*6+2; faces[3*(i*10+3)+1]=(i+1)*6+2; faces[3*(i*10+3)+2]=(i+1)*6+1;

		faces[3*(i*10+4)]=i*6+2; faces[3*(i*10+4)+1]=i*6+3;     faces[3*(i*10+4)+2]=(i+1)*6+2;
		faces[3*(i*10+5)]=i*6+3; faces[3*(i*10+5)+1]=(i+1)*6+3; faces[3*(i*10+5)+2]=(i+1)*6+2;

		faces[3*(i*10+6)]=i*6+3; faces[3*(i*10+6)+1]=i*6+4;     faces[3*(i*10+6)+2]=(i+1)*6+3;
		faces[3*(i*10+7)]=i*6+4; faces[3*(i*10+7)+1]=(i+1)*6+4; faces[3*(i*10+7)+2]=(i+1)*6+3;

		faces[3*(i*10+8)]=i*6+4; faces[3*(i*10+8)+1]=i*6+5;     faces[3*(i*10+8)+2]=(i+1)*6+4;
		faces[3*(i*10+9)]=i*6+5; faces[3*(i*10+9)+1]=(i+1)*6+5; faces[3*(i*10+9)+2]=(i+1)*6+4;
	}

	normy=1.0;
	//update coords
	updateVertices();
	//compute normy;
	normy=((covertices[0].vertex-covertices[1].vertex).crossProduct(covertices[1].vertex-covertices[6+1].vertex)).length();
	//recompute for normals
	updateVertices();

	/// Create vertex data structure for 8 vertices shared between submeshes
	msh->sharedVertexData = new VertexData();
	msh->sharedVertexData->vertexCount = nVertices;

	/// Create declaration (memory format) of vertex data
	decl = msh->sharedVertexData->vertexDeclaration;
	size_t offset = 0;
	decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
	offset += VertexElement::getTypeSize(VET_FLOAT3);
	decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
	offset += VertexElement::getTypeSize(VET_FLOAT3);
//        decl->addElement(0, offset, VET_FLOAT3, VES_DIFFUSE);
//        offset += VertexElement::getTypeSize(VET_FLOAT3);
	decl->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
	offset += VertexElement::getTypeSize(VET_FLOAT2);

	/// Allocate vertex buffer of the requested number of vertices (vertexCount)
	/// and bytes per vertex (offset)
	vbuf =
	  HardwareBufferManager::getSingleton().createVertexBuffer(
		  offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

	/// Upload the vertex data to the card
	vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);

	/// Set vertex buffer binding so buffer 0 is bound to our vertex buffer
	VertexBufferBinding* bind = msh->sharedVertexData->vertexBufferBinding;
	bind->setBinding(0, vbuf);

	//for the face
	/// Allocate index buffer of the requested number of vertices (ibufCount)
	HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
	 createIndexBuffer(
		 HardwareIndexBuffer::IT_16BIT,
			ibufCount,
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	/// Upload the index data to the card
	ibuf->writeData(0, ibuf->getSizeInBytes(), faces, true);

	/// Set parameters of the submesh
	sub->useSharedVertices = true;
	sub->indexData->indexBuffer = ibuf;
	sub->indexData->indexCount = ibufCount;
	sub->indexData->indexStart = 0;


	/// Set bounding information (for culling)
	msh->_setBounds(AxisAlignedBox(-1,-1,0,1,1,0), true);
	//msh->_setBoundingSphereRadius(Math::Sqrt(1*1+1*1));

	/// Notify Mesh object that it has been loaded
	//msh->buildTangentVectors();
	/*unsigned short src, dest;
	if (!msh->suggestTangentVectorBuildParams(src, dest))
	{
		msh->buildTangentVectors(src, dest);
	}
	*/

	msh->load();
	//msh->touch();
	//        msh->load();

			//msh->buildEdgeList();
}
开发者ID:Bob-Z,项目名称:rigs-of-rods,代码行数:101,代码来源:FlexMeshWheel.cpp

示例4: verts


//.........这里部分代码省略.........
            m_vertices[2+i*2].texcoord=Vector2(0.5+0.5*sin(i*2.0*3.14159/nrays), 0.5+0.5*cos(i*2.0*3.14159/nrays));
            m_vertices[2+i*2+1].texcoord=m_vertices[2+i*2].texcoord;
        }
    }

    // Define triangles
    // The values in this table refer to vertices in the above table
    size_t tiretread_num_indices = 3*2*nrays;
    size_t wheelface_num_indices = 3*2*nrays;
    if (m_is_rimmed) wheelface_num_indices=wheelface_num_indices*3;
    m_wheelface_indices=(unsigned short*)malloc(wheelface_num_indices*sizeof(unsigned short));
    m_tiretread_indices=(unsigned short*)malloc(tiretread_num_indices*sizeof(unsigned short));
    for (i=0; i<nrays; i++)
    {
        //wheel sides
        m_wheelface_indices[3*(i*2)]=0;   m_wheelface_indices[3*(i*2)+1]=2+i*2;     m_wheelface_indices[3*(i*2)+2]=2+((i+1)%nrays)*2;
        m_wheelface_indices[3*(i*2+1)]=1; m_wheelface_indices[3*(i*2+1)+2]=2+i*2+1; m_wheelface_indices[3*(i*2+1)+1]=2+((i+1)%nrays)*2+1;
        if (m_is_rimmed)
        {
            m_wheelface_indices[3*(i*4+0+2*nrays)]=2+i*2;           m_wheelface_indices[3*(i*4+0+2*nrays)+1]=2+4*nrays+i*2;               m_wheelface_indices[3*(i*4+0+2*nrays)+2]=2+((i+1)%nrays)*2;
            m_wheelface_indices[3*(i*4+1+2*nrays)]=2+4*nrays+i*2;   m_wheelface_indices[3*(i*4+1+2*nrays)+1]=2+4*nrays+((i+1)%nrays)*2;   m_wheelface_indices[3*(i*4+1+2*nrays)+2]=2+((i+1)%nrays)*2;
            m_wheelface_indices[3*(i*4+2+2*nrays)]=2+i*2+1;         m_wheelface_indices[3*(i*4+2+2*nrays)+2]=2+4*nrays+i*2+1;             m_wheelface_indices[3*(i*4+2+2*nrays)+1]=2+((i+1)%nrays)*2+1;
            m_wheelface_indices[3*(i*4+3+2*nrays)]=2+4*nrays+i*2+1; m_wheelface_indices[3*(i*4+3+2*nrays)+2]=2+4*nrays+((i+1)%nrays)*2+1; m_wheelface_indices[3*(i*4+3+2*nrays)+1]=2+((i+1)%nrays)*2+1;
        }
        //wheel band
        m_tiretread_indices[3*(i*2)]=2+2*nrays+i*2; m_tiretread_indices[3*(i*2)+1]=2+2*nrays+i*2+1; m_tiretread_indices[3*(i*2)+2]=2+2*nrays+((i+1)%nrays)*2;
        m_tiretread_indices[3*(i*2+1)]=2+2*nrays+((i+1)%nrays)*2; m_tiretread_indices[3*(i*2+1)+2]=2+2*nrays+((i+1)%nrays)*2+1; m_tiretread_indices[3*(i*2+1)+1]=2+2*nrays+i*2+1;
    }

    //update coords
    updateVertices();

    // Create vertex data structure for 8 vertices shared between submeshes
    m_mesh->sharedVertexData = new VertexData();
    m_mesh->sharedVertexData->vertexCount = vertex_count;

    // Create declaration (memory format) of vertex data
    m_vertex_format = m_mesh->sharedVertexData->vertexDeclaration;
    size_t offset = 0;
    m_vertex_format->addElement(0, offset, VET_FLOAT3, VES_POSITION);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
    m_vertex_format->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
//        m_vertex_format->addElement(0, offset, VET_FLOAT3, VES_DIFFUSE);
//        offset += VertexElement::getTypeSize(VET_FLOAT3);
    m_vertex_format->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
    offset += VertexElement::getTypeSize(VET_FLOAT2);

    // Allocate vertex buffer of the requested number of vertices (vertexCount)
    // and bytes per vertex (offset)
    m_hw_vbuf =
        HardwareBufferManager::getSingleton().createVertexBuffer(
            offset, m_mesh->sharedVertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

    // Upload the vertex data to the card
    m_hw_vbuf->writeData(0, m_hw_vbuf->getSizeInBytes(), m_vertices, true);

    // Set vertex buffer binding so buffer 0 is bound to our vertex buffer
    VertexBufferBinding* bind = m_mesh->sharedVertexData->vertexBufferBinding;
    bind->setBinding(0, m_hw_vbuf);

    //for the sideface
    // Allocate index buffer of the requested number of vertices (ibufCount)
    HardwareIndexBufferSharedPtr faceibuf = HardwareBufferManager::getSingleton().
        createIndexBuffer(
            HardwareIndexBuffer::IT_16BIT,
            wheelface_num_indices,
            HardwareBuffer::HBU_STATIC_WRITE_ONLY);

    // Upload the index data to the card
    faceibuf->writeData(0, faceibuf->getSizeInBytes(), m_wheelface_indices, true);

    // Set parameters of the submesh
    m_submesh_wheelface->useSharedVertices = true;
    m_submesh_wheelface->indexData->indexBuffer = faceibuf;
    m_submesh_wheelface->indexData->indexCount = wheelface_num_indices;
    m_submesh_wheelface->indexData->indexStart = 0;

    //for the band
    // Allocate index buffer of the requested number of vertices (ibufCount)
    HardwareIndexBufferSharedPtr bandibuf = HardwareBufferManager::getSingleton().
        createIndexBuffer(
            HardwareIndexBuffer::IT_16BIT,
            tiretread_num_indices,
            HardwareBuffer::HBU_STATIC_WRITE_ONLY);

    // Upload the index data to the card
    bandibuf->writeData(0, bandibuf->getSizeInBytes(), m_tiretread_indices, true);

    // Set parameters of the submesh
    m_submesh_tiretread->useSharedVertices = true;
    m_submesh_tiretread->indexData->indexBuffer = bandibuf;
    m_submesh_tiretread->indexData->indexCount = tiretread_num_indices;
    m_submesh_tiretread->indexData->indexStart = 0;

    // Set bounding information (for culling)
    m_mesh->_setBounds(AxisAlignedBox(-1,-1,0,1,1,0), true);

    m_mesh->load();
}
开发者ID:RigsOfRods,项目名称:rigs-of-rods,代码行数:101,代码来源:FlexMesh.cpp

示例5: nbrays


//.........这里部分代码省略.........
		facefaces[3*(i*2+1)]=1; facefaces[3*(i*2+1)+2]=2+i*2+1; facefaces[3*(i*2+1)+1]=2+((i+1)%nrays)*2+1;
		if (is_rimmed)
		{
			facefaces[3*(i*4+0+2*nrays)]=2+i*2; facefaces[3*(i*4+0+2*nrays)+1]=2+4*nrays+i*2;             facefaces[3*(i*4+0+2*nrays)+2]=2+((i+1)%nrays)*2;
			facefaces[3*(i*4+1+2*nrays)]=2+4*nrays+i*2; facefaces[3*(i*4+1+2*nrays)+1]=2+4*nrays+((i+1)%nrays)*2; facefaces[3*(i*4+1+2*nrays)+2]=2+((i+1)%nrays)*2;
			facefaces[3*(i*4+2+2*nrays)]=2+i*2+1; facefaces[3*(i*4+2+2*nrays)+2]=2+4*nrays+i*2+1;             facefaces[3*(i*4+2+2*nrays)+1]=2+((i+1)%nrays)*2+1;
			facefaces[3*(i*4+3+2*nrays)]=2+4*nrays+i*2+1; facefaces[3*(i*4+3+2*nrays)+2]=2+4*nrays+((i+1)%nrays)*2+1; facefaces[3*(i*4+3+2*nrays)+1]=2+((i+1)%nrays)*2+1;
		}
		//wheel band
//			bandfaces[3*(i*2)]=2+2*nrays+i*2; bandfaces[3*(i*2)+1]=2+2*nrays+i*2+1; bandfaces[3*(i*2)+2]=2+2*nrays+((i+1)%nrays)*2+1;
//			bandfaces[3*(i*2+1)]=2+2*nrays+((i+1)%nrays)*2+1; bandfaces[3*(i*2+1)+2]=2+2*nrays+i*2; bandfaces[3*(i*2+1)+1]=2+2*nrays+((i+1)%nrays)*2;
		bandfaces[3*(i*2)]=2+2*nrays+i*2; bandfaces[3*(i*2)+1]=2+2*nrays+i*2+1; bandfaces[3*(i*2)+2]=2+2*nrays+((i+1)%nrays)*2;
		bandfaces[3*(i*2+1)]=2+2*nrays+((i+1)%nrays)*2; bandfaces[3*(i*2+1)+2]=2+2*nrays+((i+1)%nrays)*2+1; bandfaces[3*(i*2+1)+1]=2+2*nrays+i*2+1;
	}

	//update coords
	updateVertices();

	/// Create vertex data structure for 8 vertices shared between submeshes
	msh->sharedVertexData = new VertexData();
	msh->sharedVertexData->vertexCount = nVertices;

	/// Create declaration (memory format) of vertex data
	decl = msh->sharedVertexData->vertexDeclaration;
	size_t offset = 0;
	decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
	offset += VertexElement::getTypeSize(VET_FLOAT3);
	decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
	offset += VertexElement::getTypeSize(VET_FLOAT3);
//        decl->addElement(0, offset, VET_FLOAT3, VES_DIFFUSE);
//        offset += VertexElement::getTypeSize(VET_FLOAT3);
	decl->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
	offset += VertexElement::getTypeSize(VET_FLOAT2);

	/// Allocate vertex buffer of the requested number of vertices (vertexCount)
	/// and bytes per vertex (offset)
	vbuf =
		HardwareBufferManager::getSingleton().createVertexBuffer(
			offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

	/// Upload the vertex data to the card
	vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);

	/// Set vertex buffer binding so buffer 0 is bound to our vertex buffer
	VertexBufferBinding* bind = msh->sharedVertexData->vertexBufferBinding;
	bind->setBinding(0, vbuf);

	//for the face
	/// Allocate index buffer of the requested number of vertices (ibufCount)
	HardwareIndexBufferSharedPtr faceibuf = HardwareBufferManager::getSingleton().
		createIndexBuffer(
			HardwareIndexBuffer::IT_16BIT,
			faceibufCount,
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	/// Upload the index data to the card
	faceibuf->writeData(0, faceibuf->getSizeInBytes(), facefaces, true);

	/// Set parameters of the submesh
	subface->useSharedVertices = true;
	subface->indexData->indexBuffer = faceibuf;
	subface->indexData->indexCount = faceibufCount;
	subface->indexData->indexStart = 0;

	//for the band
	/// Allocate index buffer of the requested number of vertices (ibufCount)
	HardwareIndexBufferSharedPtr bandibuf = HardwareBufferManager::getSingleton().
		createIndexBuffer(
			HardwareIndexBuffer::IT_16BIT,
			bandibufCount,
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	/// Upload the index data to the card
	bandibuf->writeData(0, bandibuf->getSizeInBytes(), bandfaces, true);

	/// Set parameters of the submesh
	subband->useSharedVertices = true;
	subband->indexData->indexBuffer = bandibuf;
	subband->indexData->indexCount = bandibufCount;
	subband->indexData->indexStart = 0;

	/// Set bounding information (for culling)
	msh->_setBounds(AxisAlignedBox(-1,-1,0,1,1,0), true);
	//msh->_setBoundingSphereRadius(Math::Sqrt(1*1+1*1));

		/// Notify Mesh object that it has been loaded
	//msh->buildTangentVectors();
	/*unsigned short src, dest;
	if (!msh->suggestTangentVectorBuildParams(src, dest))
	{
		msh->buildTangentVectors(src, dest);
	}
	*/

	msh->load();
	//msh->touch();
	//        msh->load();

	//msh->buildEdgeList();
}
开发者ID:TOLGAAAAA,项目名称:rigs-of-rods,代码行数:101,代码来源:FlexMesh.cpp

示例6: VertexData

Airbrake::Airbrake(char* basename, int num, node_t *ndref, node_t *ndx, node_t *ndy, node_t *nda, Vector3 pos, float width, float length, float maxang, char* texname, float tx1, float ty1, float tx2, float ty2, float lift_coef)
{
	snode=0;
	noderef=ndref;
	nodex=ndx;
	nodey=ndy;
	nodea=nda;
	offset=pos;
	maxangle=maxang;
	area=width*length*lift_coef;
	char meshname[256];
	sprintf(meshname, "airbrakemesh-%s-%i", basename, num);
	/// Create the mesh via the MeshManager
    msh = MeshManager::getSingleton().createManual(meshname, ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

	union
	{
		float *vertices;
		CoVertice_t *covertices;
	};

    /// Create submesh
    SubMesh* sub = msh->createSubMesh();

	//materials
	sub->setMaterialName(texname);

    /// Define the vertices
    size_t nVertices = 4;
    size_t vbufCount = (2*3+2)*nVertices;
	vertices=(float*)malloc(vbufCount*sizeof(float));

	//textures coordinates
	covertices[0].texcoord=Vector2(tx1, ty1);
	covertices[1].texcoord=Vector2(tx2, ty1);
	covertices[2].texcoord=Vector2(tx2, ty2);
	covertices[3].texcoord=Vector2(tx1, ty2);

    /// Define triangles
    /// The values in this table refer to vertices in the above table
    size_t ibufCount = 3*4;
    unsigned short *faces=(unsigned short*)malloc(ibufCount*sizeof(unsigned short));
	faces[0]=0; faces[1]=1; faces[2]=2;
	faces[3]=0; faces[4]=2; faces[5]=3;
	faces[6]=0; faces[7]=2; faces[8]=1;
	faces[9]=0; faces[10]=3; faces[11]=2;

	//set coords
	covertices[0].vertex=Vector3(0,0,0);
	covertices[1].vertex=Vector3(width,0,0);
	covertices[2].vertex=Vector3(width,0,length);
	covertices[3].vertex=Vector3(0,0,length);

	covertices[0].normal=Vector3(0,1,0);
	covertices[1].normal=Vector3(0,1,0);
	covertices[2].normal=Vector3(0,1,0);
	covertices[3].normal=Vector3(0,1,0);

    /// Create vertex data structure for vertices shared between submeshes
    msh->sharedVertexData = new VertexData();
    msh->sharedVertexData->vertexCount = nVertices;

    /// Create declaration (memory format) of vertex data
    VertexDeclaration* decl = msh->sharedVertexData->vertexDeclaration;
    size_t offset = 0;
    decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
    decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
//        decl->addElement(0, offset, VET_FLOAT3, VES_DIFFUSE);
//        offset += VertexElement::getTypeSize(VET_FLOAT3);
    decl->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
    offset += VertexElement::getTypeSize(VET_FLOAT2);

    /// Allocate vertex buffer of the requested number of vertices (vertexCount)
    /// and bytes per vertex (offset)
    HardwareVertexBufferSharedPtr vbuf =
        HardwareBufferManager::getSingleton().createVertexBuffer(
            offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

    /// Upload the vertex data to the card
    vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);

    /// Set vertex buffer binding so buffer 0 is bound to our vertex buffer
    VertexBufferBinding* bind = msh->sharedVertexData->vertexBufferBinding;
    bind->setBinding(0, vbuf);

	/// Allocate index buffer of the requested number of vertices (ibufCount)
    HardwareIndexBufferSharedPtr faceibuf = HardwareBufferManager::getSingleton().
        createIndexBuffer(
            HardwareIndexBuffer::IT_16BIT,
            ibufCount,
            HardwareBuffer::HBU_STATIC_WRITE_ONLY);

    /// Upload the index data to the card
    faceibuf->writeData(0, faceibuf->getSizeInBytes(), faces, true);

    /// Set parameters of the submesh
    sub->useSharedVertices = true;
    sub->indexData->indexBuffer = faceibuf;
//.........这里部分代码省略.........
开发者ID:adriansnetlis,项目名称:rigs-of-rods,代码行数:101,代码来源:AirBrake.cpp

示例7: createOgreMesh

// Convert Nif::NiTriShape to Ogre::SubMesh, attached to the given
// mesh.
static void createOgreMesh(Mesh *mesh, NiTriShape *shape, const String &material)
{
  NiTriShapeData *data = shape->data.getPtr();
  SubMesh *sub = mesh->createSubMesh(shape->name.toString());

  int nextBuf = 0;

  // This function is just one long stream of Ogre-barf, but it works
  // great.

  // Add vertices
  int numVerts = data->vertices.length / 3;
  sub->vertexData = new VertexData();
  sub->vertexData->vertexCount = numVerts;
  sub->useSharedVertices = false;
  VertexDeclaration *decl = sub->vertexData->vertexDeclaration;
  decl->addElement(nextBuf, 0, VET_FLOAT3, VES_POSITION);
  HardwareVertexBufferSharedPtr vbuf =
    HardwareBufferManager::getSingleton().createVertexBuffer(
      VertexElement::getTypeSize(VET_FLOAT3),
      numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
  vbuf->writeData(0, vbuf->getSizeInBytes(), data->vertices.ptr, true);
  VertexBufferBinding* bind = sub->vertexData->vertexBufferBinding;
  bind->setBinding(nextBuf++, vbuf);

  // Vertex normals
  if(data->normals.length)
    {
      decl->addElement(nextBuf, 0, VET_FLOAT3, VES_NORMAL);
      vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
          VertexElement::getTypeSize(VET_FLOAT3),
          numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
      vbuf->writeData(0, vbuf->getSizeInBytes(), data->normals.ptr, true);
      bind->setBinding(nextBuf++, vbuf);
    }

  // Vertex colors
  if(data->colors.length)
    {
      const float *colors = data->colors.ptr;
      RenderSystem* rs = Root::getSingleton().getRenderSystem();
      std::vector<RGBA> colorsRGB(numVerts);
      RGBA *pColour = &colorsRGB.front();
      for(int i=0; i<numVerts; i++)
	{
	  rs->convertColourValue(ColourValue(colors[0],colors[1],colors[2],
                                             colors[3]),pColour++);
	  colors += 4;
	}
      decl->addElement(nextBuf, 0, VET_COLOUR, VES_DIFFUSE);
      vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
          VertexElement::getTypeSize(VET_COLOUR),
	  numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
      vbuf->writeData(0, vbuf->getSizeInBytes(), &colorsRGB.front(), true);
      bind->setBinding(nextBuf++, vbuf);
    }

  // Texture UV coordinates
  if(data->uvlist.length)
    {
      decl->addElement(nextBuf, 0, VET_FLOAT2, VES_TEXTURE_COORDINATES);
      vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
          VertexElement::getTypeSize(VET_FLOAT2),
          numVerts, HardwareBuffer::HBU_STATIC_WRITE_ONLY);

      vbuf->writeData(0, vbuf->getSizeInBytes(), data->uvlist.ptr, true);
      bind->setBinding(nextBuf++, vbuf);
    }

  // Triangle faces
  int numFaces = data->triangles.length;
  if(numFaces)
    {
      HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
	createIndexBuffer(HardwareIndexBuffer::IT_16BIT,
			  numFaces,
			  HardwareBuffer::HBU_STATIC_WRITE_ONLY);
      ibuf->writeData(0, ibuf->getSizeInBytes(), data->triangles.ptr, true);
      sub->indexData->indexBuffer = ibuf;
      sub->indexData->indexCount = numFaces;
      sub->indexData->indexStart = 0;
    }

  // Set material if one was given
  if(!material.empty()) sub->setMaterialName(material);

  /* Old commented D code. Might be useful when reimplementing
     animation.
  // Assign this submesh to the given bone
  VertexBoneAssignment v;
  v.boneIndex = ((Bone*)bone)->getHandle();
  v.weight = 1.0;

  std::cerr << "+ Assigning bone index " << v.boneIndex << "\n";

  for(int i=0; i < numVerts; i++)
    {
      v.vertexIndex = i;
//.........这里部分代码省略.........
开发者ID:OndraK,项目名称:openmw,代码行数:101,代码来源:ogre_nif_loader.cpp

示例8: _prepareMesh

	void _prepareMesh()
	{
		int i,lvl ;

		mesh = MeshManager::getSingleton().createManual(name,
            ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME) ;
		subMesh = mesh->createSubMesh();
		subMesh->useSharedVertices=false;

		int numVertices = 4 ;

		if (first) { // first Circle, create some static common data
			first = false ;

			// static buffer for position and normals
			posnormVertexBuffer =
				HardwareBufferManager::getSingleton().createVertexBuffer(
					6*sizeof(float), // size of one vertex data
					4, // number of vertices
					HardwareBuffer::HBU_STATIC_WRITE_ONLY, // usage
					false); // no shadow buffer
			float *posnormBufData = (float*) posnormVertexBuffer->
				lock(HardwareBuffer::HBL_DISCARD);
			for(i=0;i<numVertices;i++) {
				posnormBufData[6*i+0]=((Real)(i%2)-0.5f)*CIRCLE_SIZE; // pos X
				posnormBufData[6*i+1]=0; // pos Y
				posnormBufData[6*i+2]=((Real)(i/2)-0.5f)*CIRCLE_SIZE; // pos Z
				posnormBufData[6*i+3]=0 ; // normal X
				posnormBufData[6*i+4]=1 ; // normal Y
				posnormBufData[6*i+5]=0 ; // normal Z
			}
			posnormVertexBuffer->unlock();

			// static buffers for 16 sets of texture coordinates
			texcoordsVertexBuffers = new HardwareVertexBufferSharedPtr[16];
			for(lvl=0;lvl<16;lvl++) {
				texcoordsVertexBuffers[lvl] =
					HardwareBufferManager::getSingleton().createVertexBuffer(
						2*sizeof(float), // size of one vertex data
						numVertices, // number of vertices
						HardwareBuffer::HBU_STATIC_WRITE_ONLY, // usage
						false); // no shadow buffer
				float *texcoordsBufData = (float*) texcoordsVertexBuffers[lvl]->
					lock(HardwareBuffer::HBL_DISCARD);
				float x0 = (Real)(lvl % 4) * 0.25 ;
				float y0 = (Real)(lvl / 4) * 0.25 ;
				y0 = 0.75-y0 ; // upside down
				for(i=0;i<4;i++) {
					texcoordsBufData[i*2 + 0]=
						x0 + 0.25 * (Real)(i%2) ;
					texcoordsBufData[i*2 + 1]=
						y0 + 0.25 * (Real)(i/2) ;
				}
				texcoordsVertexBuffers[lvl]->unlock();
			}

			// Index buffer for 2 faces
			unsigned short faces[6] = {2,1,0,  2,3,1};
			indexBuffer =
				HardwareBufferManager::getSingleton().createIndexBuffer(
					HardwareIndexBuffer::IT_16BIT,
					6,
					HardwareBuffer::HBU_STATIC_WRITE_ONLY);
			indexBuffer->writeData(0,
				indexBuffer->getSizeInBytes(),
				faces,
				true); // true?
		}

		// Initialize vertex data
		subMesh->vertexData = new VertexData();
		subMesh->vertexData->vertexStart = 0;
		subMesh->vertexData->vertexCount = 4;
		// first, set vertex buffer bindings
		VertexBufferBinding *vbind = subMesh->vertexData->vertexBufferBinding ;
		vbind->setBinding(0, posnormVertexBuffer);
		vbind->setBinding(1, texcoordsVertexBuffers[0]);
		// now, set vertex buffer declaration
		VertexDeclaration *vdecl = subMesh->vertexData->vertexDeclaration ;
		vdecl->addElement(0, 0, VET_FLOAT3, VES_POSITION);
		vdecl->addElement(0, 3*sizeof(float), VET_FLOAT3, VES_NORMAL);
		vdecl->addElement(1, 0, VET_FLOAT2, VES_TEXTURE_COORDINATES);

		// Initialize index data
		subMesh->indexData->indexBuffer = indexBuffer;
		subMesh->indexData->indexStart = 0;
		subMesh->indexData->indexCount = 6;

		// set mesh bounds
		AxisAlignedBox circleBounds(-CIRCLE_SIZE/2.0f, 0, -CIRCLE_SIZE/2.0f,
			CIRCLE_SIZE/2.0f, 0, CIRCLE_SIZE/2.0f);
		mesh->_setBounds(circleBounds);
        mesh->load();
        mesh->touch();
	}
开发者ID:Argos86,项目名称:dt2370,代码行数:95,代码来源:Water.cpp

示例9: switch

FlexObj::FlexObj(node_t *nds, std::vector<CabTexcoord>& texcoords, int numtriangles, 
                 int* triangles, std::vector<CabSubmesh>& submesh_defs, 
                 char* texname, const char* name, char* backtexname, char* transtexname)
{
    m_triangle_count = numtriangles;

    m_all_nodes=nds;
    // Create the mesh via the MeshManager
    m_mesh = MeshManager::getSingleton().createManual(name, ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

    // Create submeshes
    m_submeshes.reserve(submesh_defs.size());
    for (size_t j=0; j<submesh_defs.size(); j++)
    {
        Ogre::SubMesh* submesh = m_mesh->createSubMesh();
        switch (submesh_defs[j].backmesh_type)
        {
        case CabSubmesh::BACKMESH_OPAQUE:      submesh->setMaterialName(backtexname);  break;
        case CabSubmesh::BACKMESH_TRANSPARENT: submesh->setMaterialName(transtexname); break;
        default:                               submesh->setMaterialName(texname);
        }
        m_submeshes.push_back(submesh);
    };

    // Define the m_vertices_raw (8 vertices, each consisting of 3 groups of 3 floats
    m_vertex_count = texcoords.size();
    m_vertices_raw=(float*)malloc(((2*3+2)*m_vertex_count)*sizeof(float));
    m_vertex_nodes=(int*)malloc(m_vertex_count*sizeof(int));
    
    for (size_t i=0; i<m_vertex_count; i++)
    {
        m_vertex_nodes[i] = texcoords[i].node_id; //define node ids
        m_vertices[i].texcoord=Vector2(texcoords[i].texcoord_u, texcoords[i].texcoord_v); //textures coordinates
    }

    // Define triangles
    // The values in this table refer to vertices in the above table
    m_index_count = 3*numtriangles;
    m_indices=(unsigned short*)malloc(m_index_count*sizeof(unsigned short));
    for (size_t i=0; i<m_index_count; i++)
    {
        m_indices[i]=ComputeVertexPos(i/3, triangles[i], submesh_defs);
    }

    m_s_ref=(float*)malloc(numtriangles*sizeof(float));

    for (size_t i=0; i<(unsigned int)numtriangles;i++)
    {
        Ogre::Vector3 base_pos = m_all_nodes[m_vertex_nodes[m_indices[i*3]]].RelPosition;
        Ogre::Vector3 v1       = m_all_nodes[m_vertex_nodes[m_indices[i*3+1]]].RelPosition - base_pos;
        Ogre::Vector3 v2       = m_all_nodes[m_vertex_nodes[m_indices[i*3+2]]].RelPosition - base_pos;
        m_s_ref[i]=v1.crossProduct(v2).length()*2.0;
    }

    this->UpdateMesh(); // Initialize the dynamic mesh

    // Create vertex data structure for vertices shared between submeshes
    m_mesh->sharedVertexData = new VertexData();
    m_mesh->sharedVertexData->vertexCount = m_vertex_count;

    // Create declaration (memory format) of vertex data
    m_vertex_format = m_mesh->sharedVertexData->vertexDeclaration;
    size_t offset = 0;
    m_vertex_format->addElement(0, offset, VET_FLOAT3, VES_POSITION);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
    m_vertex_format->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
    m_vertex_format->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
    offset += VertexElement::getTypeSize(VET_FLOAT2);

    // Allocate vertex buffer of the requested number of vertices (vertexCount)
    // and bytes per vertex (offset)
    m_hw_vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
        offset, m_mesh->sharedVertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

    // Upload the vertex data to the card
    m_hw_vbuf->writeData(0, m_hw_vbuf->getSizeInBytes(), m_vertices_raw, true);

    // Set vertex buffer binding so buffer 0 is bound to our vertex buffer
    VertexBufferBinding* bind = m_mesh->sharedVertexData->vertexBufferBinding;
    bind->setBinding(0, m_hw_vbuf);

    // Set parameters of the submeshes
    for (size_t j=0; j<m_submeshes.size(); j++)
    {
        size_t index_count;
        if (j == 0)
            index_count = 3*submesh_defs[j].cabs_pos;
        else
            index_count = 3*(submesh_defs[j].cabs_pos-submesh_defs[j-1].cabs_pos); // 3 indices per triangle

        m_submeshes[j]->useSharedVertices = true;
        HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().createIndexBuffer(
             HardwareIndexBuffer::IT_16BIT,
             index_count,
             HardwareBuffer::HBU_STATIC_WRITE_ONLY);

        // Upload the index data to the card
        unsigned short* faces_ptr;
        if (j == 0)
//.........这里部分代码省略.........
开发者ID:jirijunek,项目名称:rigs-of-rods,代码行数:101,代码来源:FlexObj.cpp

示例10: createMesh

	Mesh* OgreSubsystem::createMesh(const MeshData& data,String name)
	{
		 String nombre = name;
		if(name=="AUTO_NAME_ME")
		{
			nombre = "OryxSceneNodeAutoNamed"+StringUtils::toString(mAutoNameIndex);
			++mAutoNameIndex;
		}

		using namespace Ogre;

		bool hasVertexColor = data.getDiffuse();
		bool hasNormals = data.getNormals();

		int numFaces = data.indices.size()/3;
		int numVertices = data.vertices.size()/3;

		HardwareVertexBufferSharedPtr posVertexBuffer;
		HardwareVertexBufferSharedPtr normVertexBuffer;
		std::vector<HardwareVertexBufferSharedPtr> texcoordsVertexBuffer;
		HardwareVertexBufferSharedPtr diffuseVertexBuffer;
		HardwareIndexBufferSharedPtr indexBuffer;

		Ogre::Mesh* m = Ogre::MeshManager::getSingletonPtr()->createManual(
		nombre,ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME).get();

		Ogre::SubMesh* sm = m->createSubMesh();
		sm->useSharedVertices = false;
		sm->vertexData = new VertexData();
		sm->vertexData->vertexStart = 0;
		sm->vertexData->vertexCount = numVertices;

		Ogre::VertexDeclaration* vdecl = sm->vertexData->vertexDeclaration;
		Ogre::VertexBufferBinding* vbind = sm->vertexData->vertexBufferBinding;

		size_t bufferCount = 0;

		vdecl->addElement(bufferCount, 0, VET_FLOAT3, VES_POSITION);

		if(hasNormals)
			vdecl->addElement(++bufferCount, 0, VET_FLOAT3, VES_NORMAL);

		if(hasVertexColor)
			vdecl->addElement(++bufferCount, 0, VET_FLOAT4, VES_DIFFUSE);

		for(int i=0;i<data.texcoords.size();++i)
			vdecl->addElement(++bufferCount, 0, VET_FLOAT2, VES_TEXTURE_COORDINATES,i);

		bufferCount = 0;

		// Positions
		posVertexBuffer = HardwareBufferManager::getSingleton().createVertexBuffer(
			3*sizeof(float),numVertices,Ogre::HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

		vbind->setBinding(bufferCount, posVertexBuffer);

		float* vertices = data.getVertices();
		float* normals = data.getNormals();
		float* diffuse = data.getDiffuse();
		unsigned short* indices = data.getIndices();

		posVertexBuffer->writeData(0,posVertexBuffer->getSizeInBytes(),vertices, true);

		// Normals
		if(hasNormals)
		{
			normVertexBuffer = HardwareBufferManager::getSingleton().createVertexBuffer(
			3*sizeof(float),numVertices,HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

			vbind->setBinding(++bufferCount, normVertexBuffer);

			normVertexBuffer->writeData(0,normVertexBuffer->getSizeInBytes(),normals, true);
		}

		if(hasVertexColor)
		{
			diffuseVertexBuffer = HardwareBufferManager::getSingleton().createVertexBuffer(
			4*sizeof(float),numVertices,HardwareBuffer::HBU_STATIC_WRITE_ONLY);

			vbind->setBinding(++bufferCount, diffuseVertexBuffer);

			diffuseVertexBuffer->writeData(0,diffuseVertexBuffer->getSizeInBytes(), diffuse, true);
		}

		// Texcoords
		for(int i=0;i<data.texcoords.size();++i)
		{
			texcoordsVertexBuffer.push_back(HardwareBufferManager::getSingleton().createVertexBuffer(
			2*sizeof(float),numVertices,HardwareBuffer::HBU_STATIC_WRITE_ONLY));

			vbind->setBinding(++bufferCount, texcoordsVertexBuffer[i]);

			texcoordsVertexBuffer[i]->writeData(0,sizeof(float)*data.texcoords[i].size(),&data.texcoords[i][0], false);
		}

		if(!data.indices.empty())
		{
			// Prepare buffer for indices
			indexBuffer = HardwareBufferManager::getSingleton().createIndexBuffer(
			HardwareIndexBuffer::IT_16BIT,3*numFaces,HardwareBuffer::HBU_STATIC_WRITE_ONLY, true);
//.........这里部分代码省略.........
开发者ID:67-6f-64,项目名称:OryxEngine,代码行数:101,代码来源:OgreSubsystem.cpp

示例11: _generateSubMesh


//.........这里部分代码省略.........
	// Define vertices color.
	RenderSystem* rs = Root::getSingleton().getRenderSystem();
	RGBA* colors = new RGBA[vertCount];

	for(size_t i = 0; i < vertCount; ++i)
		rs->convertColourValue(ColourValue(0.0f + 0.175f*i, 0.2f, 1.0f - 0.175f*i), colors + i);

	// Define the triangles.
	size_t faceCount = vertCount - 1; // Face count = vertCount - cent

	size_t center = 0;
	size_t last   = 1; //collin was here
	size_t curr   = 2;

	unsigned short* faces = new unsigned short[faceCount*3];

	index = 0;

	for(size_t i = 0; i < faceCount; ++i) {
		assert(last < vertCount && curr < vertCount); // Panic check

		faces[index++] = center;
		faces[index++] = curr;
		faces[index++] = last;

		last = curr++;

		if(curr >= vertCount) curr = 1;
	}

	// All information has been generated, move into mesh structures.
	//   Note: Currently does not implement or used any sort of shared
	//     vertices. This is intentional and should be changed at the 
	//     soonest conveienence. IE -- Never. ;P
	tileMesh->useSharedVertices = false;
	tileMesh->vertexData = new VertexData();
	tileMesh->vertexData->vertexCount = vertCount;

	// Create memory footprint for vertex data.
	size_t offset = 0;
	VertexDeclaration* decl = tileMesh->vertexData->vertexDeclaration;

	// Position and normal buffer.
	// -- Position
	decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
	offset += VertexElement::getTypeSize(VET_FLOAT3);

	// -- Normal
	decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
	offset += VertexElement::getTypeSize(VET_FLOAT3);

	// Allocate a vertex buffer for a number of vertices and vertex size.
	HardwareVertexBufferSharedPtr vertBuff = 
		HardwareBufferManager::getSingleton().createVertexBuffer(
			offset, // Size of a vertex, in bytes.
			tileMesh->vertexData->vertexCount,
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	// Write our data to vertex buffer.
	vertBuff->writeData(0, vertBuff->getSizeInBytes(), vertices, true);

	// Set the buffer's bind location.
	VertexBufferBinding* vertBind = tileMesh->vertexData->vertexBufferBinding;
	vertBind->setBinding(0, vertBuff);

	// Color buffer for vertices
	offset = 0;
	decl->addElement(1, offset, VET_COLOUR, VES_DIFFUSE);
	offset += VertexElement::getTypeSize(VET_COLOUR);

	// Allocate a new buffer for colors.
	vertBuff = HardwareBufferManager::getSingleton().createVertexBuffer(
			offset, // Size of a vertex, in bytes.
			tileMesh->vertexData->vertexCount,
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	// Write color data to buffer.
	vertBuff->writeData(0, vertBuff->getSizeInBytes(), colors, true);

	// Set the color buffer's bind location
	vertBind->setBinding(1, vertBuff);

	// Allocate a buffer for the index information
	HardwareIndexBufferSharedPtr indexBuff = HardwareBufferManager::getSingleton().createIndexBuffer(
		HardwareIndexBuffer::IT_16BIT,
		faceCount*3,
		HardwareBuffer::HBU_STATIC_WRITE_ONLY);

	// Write data to the buffer.
	indexBuff->writeData(0, indexBuff->getSizeInBytes(), faces, true);

	// Finalize submesh.
	tileMesh->indexData->indexBuffer = indexBuff;
	tileMesh->indexData->indexCount = faceCount*3;
	tileMesh->indexData->indexStart = 0;

	// Deallocate the vertex and face arrays.
	if(vertices) delete[] vertices;
	if(faces) delete[] faces;
}
开发者ID:dreac0nic,项目名称:nimbus,代码行数:101,代码来源:Tile.cpp

示例12: createConvexHullMesh

Ogre::MeshPtr LodOutsideMarker::createConvexHullMesh(const String& meshName, const String& resourceGroupName)
{
    // Based on the wiki sample: http://www.ogre3d.org/tikiwiki/tiki-index.php?page=Generating+A+Mesh

    // Resource with given name should not exist!
    assert(MeshManager::getSingleton().getByName(meshName).isNull());

    generateHull(); // calculate mHull triangles.

    // Convex hull can't be empty!
    assert(!mHull.empty());

    MeshPtr mesh = MeshManager::getSingleton().createManual(meshName, resourceGroupName, NULL);
    SubMesh* subMesh = mesh->createSubMesh();

    vector<Real>::type vertexBuffer;
    vector<unsigned short>::type indexBuffer;
    // 3 position/triangle * 3 Real/position
    vertexBuffer.reserve(mHull.size() * 9);
    // 3 index / triangle
    indexBuffer.reserve(mHull.size() * 3);
    int id=0;
    // min & max position
    Vector3 minBounds(std::numeric_limits<Real>::max(), std::numeric_limits<Real>::max(), std::numeric_limits<Real>::max());
    Vector3 maxBounds(std::numeric_limits<Real>::min(), std::numeric_limits<Real>::min(), std::numeric_limits<Real>::min());

    for (size_t i = 0; i < mHull.size(); i++) {
        assert(!mHull[i].removed);
        for(size_t n = 0; n < 3; n++){
            indexBuffer.push_back(id++);
            vertexBuffer.push_back(mHull[i].vertex[n]->position.x);
            vertexBuffer.push_back(mHull[i].vertex[n]->position.y);
            vertexBuffer.push_back(mHull[i].vertex[n]->position.z);
            minBounds.x = std::min<Real>(minBounds.x, mHull[i].vertex[n]->position.x);
            minBounds.y = std::min<Real>(minBounds.y, mHull[i].vertex[n]->position.y);
            minBounds.z = std::min<Real>(minBounds.z, mHull[i].vertex[n]->position.z);
            maxBounds.x = std::max<Real>(maxBounds.x, mHull[i].vertex[n]->position.x);
            maxBounds.y = std::max<Real>(maxBounds.y, mHull[i].vertex[n]->position.y);
            maxBounds.z = std::max<Real>(maxBounds.z, mHull[i].vertex[n]->position.z);
        }
    }

    /// Create vertex data structure for 8 vertices shared between submeshes
    mesh->sharedVertexData = new VertexData();
    mesh->sharedVertexData->vertexCount = mHull.size() * 3;

    /// Create declaration (memory format) of vertex data
    VertexDeclaration* decl = mesh->sharedVertexData->vertexDeclaration;
    size_t offset = 0;
    // 1st buffer
    decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
    offset += VertexElement::getTypeSize(VET_FLOAT3);

    /// Allocate vertex buffer of the requested number of vertices (vertexCount) 
    /// and bytes per vertex (offset)
    HardwareVertexBufferSharedPtr vbuf = 
        HardwareBufferManager::getSingleton().createVertexBuffer(
        offset, mesh->sharedVertexData->vertexCount, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
    /// Upload the vertex data to the card
    vbuf->writeData(0, vbuf->getSizeInBytes(), &vertexBuffer[0], true);

    /// Set vertex buffer binding so buffer 0 is bound to our vertex buffer
    VertexBufferBinding* bind = mesh->sharedVertexData->vertexBufferBinding; 
    bind->setBinding(0, vbuf);

    /// Allocate index buffer of the requested number of vertices (ibufCount) 
    HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
        createIndexBuffer(
        HardwareIndexBuffer::IT_16BIT, 
        indexBuffer.size(), 
        HardwareBuffer::HBU_STATIC_WRITE_ONLY);

    /// Upload the index data to the card
    ibuf->writeData(0, ibuf->getSizeInBytes(), &indexBuffer[0], true);

    /// Set parameters of the submesh
    subMesh->useSharedVertices = true;
    subMesh->indexData->indexBuffer = ibuf;
    subMesh->indexData->indexCount = indexBuffer.size();
    subMesh->indexData->indexStart = 0;

    /// Set bounding information (for culling)
    mesh->_setBounds(AxisAlignedBox(minBounds, maxBounds));
    mesh->_setBoundingSphereRadius(maxBounds.distance(minBounds) / 2.0f);

    /// Set material to transparent blue
    subMesh->setMaterialName("Examples/TransparentBlue50");

    /// Notify -Mesh object that it has been loaded
    mesh->load();

    return mesh;
}
开发者ID:LiberatorUSA,项目名称:GUCEF,代码行数:93,代码来源:OgreLodOutsideMarker.cpp

示例13: sqrt

void BasicTutorial2::createColourCube()
{
    /// Create the mesh via the MeshManager
    Ogre::MeshPtr msh = MeshManager::getSingleton().createManual("ColourCube", "General");
 
    /// Create one submesh
    SubMesh* sub = msh->createSubMesh();
 
    const float sqrt13 = 0.577350269f; /* sqrt(1/3) */
 
    /// Define the vertices (8 vertices, each have 3 floats for position and 3 for normal)
    const size_t nVertices = 8;
    const size_t vbufCount = 3*2*nVertices;
    float vertices[vbufCount] = {
            -100.0,100.0,-100.0,        //0 position
            -sqrt13,sqrt13,-sqrt13,     //0 normal
            100.0,100.0,-100.0,         //1 position
            sqrt13,sqrt13,-sqrt13,      //1 normal
            100.0,-100.0,-100.0,        //2 position
            sqrt13,-sqrt13,-sqrt13,     //2 normal
            -100.0,-100.0,-100.0,       //3 position
            -sqrt13,-sqrt13,-sqrt13,    //3 normal
            -100.0,100.0,100.0,         //4 position
            -sqrt13,sqrt13,sqrt13,      //4 normal
            100.0,100.0,100.0,          //5 position
            sqrt13,sqrt13,sqrt13,       //5 normal
            100.0,-100.0,100.0,         //6 position
            sqrt13,-sqrt13,sqrt13,      //6 normal
            -100.0,-100.0,100.0,        //7 position
            -sqrt13,-sqrt13,sqrt13,     //7 normal
    };
 
    RenderSystem* rs = Root::getSingleton().getRenderSystem();
    RGBA colours[nVertices];
    RGBA *pColour = colours;
    // Use render system to convert colour value since colour packing varies
    rs->convertColourValue(ColourValue(1.0,0.0,0.0), pColour++); //0 colour
    rs->convertColourValue(ColourValue(1.0,1.0,0.0), pColour++); //1 colour
    rs->convertColourValue(ColourValue(0.0,1.0,0.0), pColour++); //2 colour
    rs->convertColourValue(ColourValue(0.0,0.0,0.0), pColour++); //3 colour
    rs->convertColourValue(ColourValue(1.0,0.0,1.0), pColour++); //4 colour
    rs->convertColourValue(ColourValue(1.0,1.0,1.0), pColour++); //5 colour
    rs->convertColourValue(ColourValue(0.0,1.0,1.0), pColour++); //6 colour
    rs->convertColourValue(ColourValue(0.0,0.0,1.0), pColour++); //7 colour
 
    /// Define 12 triangles (two triangles per cube face)
    /// The values in this table refer to vertices in the above table
    const size_t ibufCount = 36;
    unsigned short faces[ibufCount] = {
            0,2,3,
            0,1,2,
            1,6,2,
            1,5,6,
            4,6,5,
            4,7,6,
            0,7,4,
            0,3,7,
            0,5,1,
            0,4,5,
            2,7,3,
            2,6,7
    };
 
    /// Create vertex data structure for 8 vertices shared between submeshes
    msh->sharedVertexData = new VertexData();
    msh->sharedVertexData->vertexCount = nVertices;
 
    /// Create declaration (memory format) of vertex data
    VertexDeclaration* decl = msh->sharedVertexData->vertexDeclaration;
    size_t offset = 0;
    // 1st buffer
    decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
    decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
    /// Allocate vertex buffer of the requested number of vertices (vertexCount) 
    /// and bytes per vertex (offset)
    HardwareVertexBufferSharedPtr vbuf = 
        HardwareBufferManager::getSingleton().createVertexBuffer(
        offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
    /// Upload the vertex data to the card
    vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);
 
    /// Set vertex buffer binding so buffer 0 is bound to our vertex buffer
    VertexBufferBinding* bind = msh->sharedVertexData->vertexBufferBinding; 
    bind->setBinding(0, vbuf);
 
    // 2nd buffer
    offset = 0;
    decl->addElement(1, offset, VET_COLOUR, VES_DIFFUSE);
    offset += VertexElement::getTypeSize(VET_COLOUR);
    /// Allocate vertex buffer of the requested number of vertices (vertexCount) 
    /// and bytes per vertex (offset)
    vbuf = HardwareBufferManager::getSingleton().createVertexBuffer(
        offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
    /// Upload the vertex data to the card
    vbuf->writeData(0, vbuf->getSizeInBytes(), colours, true);
 
    /// Set vertex buffer binding so buffer 1 is bound to our colour buffer
    bind->setBinding(1, vbuf);
//.........这里部分代码省略.........
开发者ID:asvsfs,项目名称:TheJourney,代码行数:101,代码来源:BasicTutorial2.cpp

示例14: ResourceBuffer


//.........这里部分代码省略.........
		nodeIDs[i]=(int)(texcoords[i].x);
	}

	//textures coordinates
	for (i=0; i<nVertices; i++)
	{
		covertices[i].texcoord=Vector2(texcoords[i].y,texcoords[i].z);
	}

    /// Define triangles
    /// The values in this table refer to vertices in the above table
    ibufCount = 3*numtriangles;
    faces=(unsigned short*)malloc(ibufCount*sizeof(unsigned short));
	for (i=0; i<ibufCount; i++)
	{
		faces[i]=findID(i/3, triangles[i], numsubmeshes, subtexindex, subtriindex);
	}

	sref=(float*)malloc(numtriangles*sizeof(float));

	for (i=0; i<(unsigned int)numtriangles;i++)
	{
		Vector3 v1, v2;
		v1=nodes[nodeIDs[faces[i*3+1]]].RelPosition-nodes[nodeIDs[faces[i*3]]].RelPosition;
		v2=nodes[nodeIDs[faces[i*3+2]]].RelPosition-nodes[nodeIDs[faces[i*3]]].RelPosition;
		v1=v1.crossProduct(v2);
		sref[i]=v1.length()*2.0;
	}


	//update coords
	updateVertices();



    /// Create vertex data structure for vertices shared between submeshes
    msh->sharedVertexData = new VertexData();
    msh->sharedVertexData->vertexCount = nVertices;


    /// Create declaration (memory format) of vertex data
    decl = msh->sharedVertexData->vertexDeclaration;
    size_t offset = 0;
    decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
    decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
    offset += VertexElement::getTypeSize(VET_FLOAT3);
//        decl->addElement(0, offset, VET_FLOAT3, VES_DIFFUSE);
//        offset += VertexElement::getTypeSize(VET_FLOAT3);
    decl->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
    offset += VertexElement::getTypeSize(VET_FLOAT2);


    /// Allocate vertex buffer of the requested number of vertices (vertexCount)
    /// and bytes per vertex (offset)
    vbuf =
      HardwareBufferManager::getSingleton().createVertexBuffer(
          offset, msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

    /// Upload the vertex data to the card
    vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);


    /// Set vertex buffer binding so buffer 0 is bound to our vertex buffer
    VertexBufferBinding* bind = msh->sharedVertexData->vertexBufferBinding;
    bind->setBinding(0, vbuf);




    /// Set parameters of the submeshes
	for (j=0; j<numsubmeshes; j++)
	{
		int smcount=3*(subtriindex[j+1]-subtriindex[j]);
        subs[j]->useSharedVertices = true;
		/// Allocate index buffer of the requested number of vertices (ibufCount)
		HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
		 createIndexBuffer(
			 HardwareIndexBuffer::IT_16BIT,
				smcount,
				HardwareBuffer::HBU_STATIC_WRITE_ONLY);

		/// Upload the index data to the card
		ibuf->writeData(0, ibuf->getSizeInBytes(), &faces[subtriindex[j]*3], true);
	    subs[j]->indexData->indexBuffer = ibuf;
		subs[j]->indexData->indexCount = smcount;
        subs[j]->indexData->indexStart = 0;
	}


    /// Set bounding information (for culling)
    msh->_setBounds(AxisAlignedBox(-100,-100,-100,100,100,100), true);
    //msh->_setBoundingSphereRadius(100);


    /// Notify Mesh object that it has been loaded
    msh->load();
	msh->buildEdgeList();

}
开发者ID:tizbac,项目名称:ror-ng,代码行数:101,代码来源:FlexObj.cpp

示例15: createCube


//.........这里部分代码省略.........
			1,1,
			CUBE_HALF_SIZE, CUBE_HALF_SIZE, -CUBE_HALF_SIZE,
			1,0,0,
			1,0,
			CUBE_HALF_SIZE, CUBE_HALF_SIZE, CUBE_HALF_SIZE,
			1,0,0,
			0,0,

			// up side
			-CUBE_HALF_SIZE, CUBE_HALF_SIZE, CUBE_HALF_SIZE,
			0,1,0,
			0,1,
			CUBE_HALF_SIZE, CUBE_HALF_SIZE, CUBE_HALF_SIZE,
			0,1,0,
			1,1,
			CUBE_HALF_SIZE, CUBE_HALF_SIZE, -CUBE_HALF_SIZE,
			0,1,0,
			1,0,
			-CUBE_HALF_SIZE, CUBE_HALF_SIZE, -CUBE_HALF_SIZE,
			0,1,0,
			0,0,

			// down side
			-CUBE_HALF_SIZE, -CUBE_HALF_SIZE, -CUBE_HALF_SIZE,
			0,-1,0,
			0,1,
			CUBE_HALF_SIZE, -CUBE_HALF_SIZE, -CUBE_HALF_SIZE,
			0,-1,0,
			1,1,
			CUBE_HALF_SIZE, -CUBE_HALF_SIZE, CUBE_HALF_SIZE,
			0,-1,0,
			1,0,
			-CUBE_HALF_SIZE, -CUBE_HALF_SIZE, CUBE_HALF_SIZE,
			0,-1,0,
			0,0 
		};

		mesh->sharedVertexData = OGRE_NEW VertexData();
		mesh->sharedVertexData->vertexCount = NUM_VERTICES;
		VertexDeclaration* decl = mesh->sharedVertexData->vertexDeclaration;
		VertexBufferBinding* bind = mesh->sharedVertexData->vertexBufferBinding;

		size_t offset = 0;
		decl->addElement(0, offset, VET_FLOAT3, VES_POSITION);
		offset += VertexElement::getTypeSize(VET_FLOAT3);
		decl->addElement(0, offset, VET_FLOAT3, VES_NORMAL);
		offset += VertexElement::getTypeSize(VET_FLOAT3);
		decl->addElement(0, offset, VET_FLOAT2, VES_TEXTURE_COORDINATES, 0);
		offset += VertexElement::getTypeSize(VET_FLOAT2);

		HardwareVertexBufferSharedPtr vbuf = 
			HardwareBufferManager::getSingleton().createVertexBuffer(
			offset, NUM_VERTICES, HardwareBuffer::HBU_STATIC_WRITE_ONLY);
		bind->setBinding(0, vbuf);

		vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);

		sub->useSharedVertices = true;
		HardwareIndexBufferSharedPtr ibuf = HardwareBufferManager::getSingleton().
			createIndexBuffer(
			HardwareIndexBuffer::IT_16BIT, 
			NUM_INDICES,
			HardwareBuffer::HBU_STATIC_WRITE_ONLY);

		unsigned short faces[NUM_INDICES] = {
			// front
			0,1,2,
			0,2,3,

			// back
			4,5,6,
			4,6,7,

			// left
			8,9,10,
			8,10,11,

			// right
			12,13,14,
			12,14,15,

			// up
			16,17,18,
			16,18,19,

			// down
			20,21,22,
			20,22,23
		};

		sub->indexData->indexBuffer = ibuf;
		sub->indexData->indexCount = NUM_INDICES;
		sub->indexData->indexStart = 0;
		ibuf->writeData(0, ibuf->getSizeInBytes(), faces, true);

		mesh->_setBounds(AxisAlignedBox(-CUBE_HALF_SIZE, -CUBE_HALF_SIZE, -CUBE_HALF_SIZE,
			CUBE_HALF_SIZE, CUBE_HALF_SIZE, CUBE_HALF_SIZE), true);

		mesh->_setBoundingSphereRadius(CUBE_HALF_SIZE);
	}
开发者ID:terminus510,项目名称:OgreBulletTest,代码行数:101,代码来源:OgrePrefabFactory.cpp


注:本文中的HardwareIndexBufferSharedPtr::writeData方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。