本文整理汇总了C++中GrGLVertexBuilder类的典型用法代码示例。如果您正苦于以下问题:C++ GrGLVertexBuilder类的具体用法?C++ GrGLVertexBuilder怎么用?C++ GrGLVertexBuilder使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了GrGLVertexBuilder类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const DefaultGeoProc& gp = args.fGP.cast<DefaultGeoProc>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
GrGLFragmentBuilder* fs = args.fPB->getFragmentShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(gp);
// Setup pass through color
if (!gp.colorIgnored()) {
if (gp.hasVertexColor()) {
pb->addPassThroughAttribute(gp.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
}
// Setup position
this->setupPosition(pb, gpArgs, gp.inPosition()->fName, gp.viewMatrix(),
&fViewMatrixUniform);
if (gp.hasExplicitLocalCoords()) {
// emit transforms with explicit local coords
this->emitTransforms(pb, gpArgs->fPositionVar, gp.inLocalCoords()->fName,
gp.localMatrix(), args.fTransformsIn, args.fTransformsOut);
} else if(gp.hasTransformedLocalCoords()) {
// transforms have already been applied to vertex attributes on the cpu
this->emitTransforms(pb, gp.inLocalCoords()->fName,
args.fTransformsIn, args.fTransformsOut);
} else {
// emit transforms with position
this->emitTransforms(pb, gpArgs->fPositionVar, gp.inPosition()->fName,
gp.localMatrix(), args.fTransformsIn, args.fTransformsOut);
}
// Setup coverage as pass through
if (!gp.coverageWillBeIgnored()) {
if (gp.hasVertexCoverage()) {
fs->codeAppendf("float alpha = 1.0;");
args.fPB->addPassThroughAttribute(gp.inCoverage(), "alpha");
fs->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
} else if (gp.coverage() == 0xff) {
fs->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
} else {
const char* fragCoverage;
fCoverageUniform = pb->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"Coverage",
&fragCoverage);
fs->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, fragCoverage);
}
}
}
示例2: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(cte);
GrGLVertToFrag v(kVec2f_GrSLType);
pb->addVarying("TextureCoords", &v);
// this is only used with text, so our texture bounds always match the glyph atlas
if (cte.maskFormat() == kA8_GrMaskFormat) {
vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", "
GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(),
cte.inTextureCoords()->fName);
} else {
vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_RECIP_WIDTH ", "
GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(),
cte.inTextureCoords()->fName);
}
// Setup pass through color
if (!cte.colorIgnored()) {
if (cte.hasVertexColor()) {
pb->addPassThroughAttribute(cte.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
}
// Setup position
this->setupPosition(pb, gpArgs, cte.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, cte.inPosition()->fName,
cte.localMatrix(), args.fTransformsIn, args.fTransformsOut);
GrGLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
if (cte.maskFormat() == kARGB_GrMaskFormat) {
fsBuilder->codeAppendf("%s = ", args.fOutputColor);
fsBuilder->appendTextureLookupAndModulate(args.fOutputColor,
args.fSamplers[0],
v.fsIn(),
kVec2f_GrSLType);
fsBuilder->codeAppend(";");
fsBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
} else {
fsBuilder->codeAppendf("%s = ", args.fOutputCoverage);
fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType);
fsBuilder->codeAppend(";");
}
}
示例3: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(qe);
GrGLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("QuadEdge", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName);
const BatchTracker& local = args.fBT.cast<BatchTracker>();
// Setup pass through color
this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL,
&fColorUniform);
// Setup position
this->setupPosition(pb, gpArgs, qe.inPosition()->fName, qe.viewMatrix());
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, qe.inPosition()->fName,
qe.localMatrix(), args.fTransformsIn, args.fTransformsOut);
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("float edgeAlpha;");
// keep the derivative instructions outside the conditional
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn());
// today we know z and w are in device space. We could use derivatives
fsBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(),
v.fsIn());
fsBuilder->codeAppendf ("} else {");
fsBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,"
" 2.0*%s.x*duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(),
v.fsIn());
fsBuilder->codeAppendf("edgeAlpha = "
"clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}");
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
示例4: setupPosition
void GrGLGeometryProcessor::setupPosition(GrGLGPBuilder* pb,
GrGPArgs* gpArgs,
const char* posName,
const SkMatrix& mat) {
GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
if (mat.isIdentity()) {
gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2");
vsBuilder->codeAppendf("vec2 %s = %s;", gpArgs->fPositionVar.c_str(), posName);
} else if (!mat.hasPerspective()) {
this->addUniformViewMatrix(pb);
gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2");
vsBuilder->codeAppendf("vec2 %s = vec2(%s * vec3(%s, 1));",
gpArgs->fPositionVar.c_str(), this->uViewM(), posName);
} else {
this->addUniformViewMatrix(pb);
gpArgs->fPositionVar.set(kVec3f_GrSLType, "pos3");
vsBuilder->codeAppendf("vec3 %s = %s * vec3(%s, 1);",
gpArgs->fPositionVar.c_str(), this->uViewM(), posName);
}
}
示例5: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const GrDistanceFieldLCDTextGeoProc& dfTexEffect =
args.fGP.cast<GrDistanceFieldLCDTextGeoProc>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(dfTexEffect);
// setup pass through color
if (!dfTexEffect.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName,
args.fTransformsIn, args.fTransformsOut);
// set up varyings
bool isUniformScale = SkToBool(dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask);
GrGLVertToFrag recipScale(kFloat_GrSLType);
GrGLVertToFrag st(kVec2f_GrSLType);
args.fPB->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName);
GrGLVertToFrag uv(kVec2f_GrSLType);
args.fPB->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
// this is only used with text, so our texture bounds always match the glyph atlas
vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", "
GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", uv.vsOut(),
dfTexEffect.inTextureCoords()->fName);
// add frag shader code
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
// create LCD offset adjusted by inverse of transform
// Use highp to work around aliasing issues
fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision,
pb->ctxInfo().standard()));
fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision,
pb->ctxInfo().standard()));
if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) {
fsBuilder->codeAppend("float delta = -" GR_FONT_ATLAS_LCD_DELTA ";\n");
} else {
fsBuilder->codeAppend("float delta = " GR_FONT_ATLAS_LCD_DELTA ";\n");
}
if (isUniformScale) {
fsBuilder->codeAppendf("float dy = abs(dFdy(%s.y));", st.fsIn());
fsBuilder->codeAppend("vec2 offset = vec2(dy*delta, 0.0);");
} else {
fsBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn());
fsBuilder->codeAppend("vec2 Jdx = dFdx(st);");
fsBuilder->codeAppend("vec2 Jdy = dFdy(st);");
fsBuilder->codeAppend("vec2 offset = delta*Jdx;");
}
// green is distance to uv center
fsBuilder->codeAppend("\tvec4 texColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tvec3 distance;\n");
fsBuilder->codeAppend("\tdistance.y = texColor.r;\n");
// red is distance to left offset
fsBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n");
fsBuilder->codeAppend("\ttexColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tdistance.x = texColor.r;\n");
// blue is distance to right offset
fsBuilder->codeAppend("\tuv_adjusted = uv + offset;\n");
fsBuilder->codeAppend("\ttexColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tdistance.z = texColor.r;\n");
fsBuilder->codeAppend("\tdistance = "
"vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));");
// adjust width based on gamma
const char* distanceAdjustUniName = NULL;
fDistanceAdjustUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"DistanceAdjust", &distanceAdjustUniName);
fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
// To be strictly correct, we should compute the anti-aliasing factor separately
// for each color component. However, this is only important when using perspective
// transformations, and even then using a single factor seems like a reasonable
// trade-off between quality and speed.
fsBuilder->codeAppend("float afwidth;");
//.........这里部分代码省略.........
示例6: emitTransforms
void GrGLGeometryProcessor::emitTransforms(GrGLGPBuilder* pb,
const GrShaderVar& posVar,
const char* localCoords,
const SkMatrix& localMatrix,
const TransformsIn& tin,
TransformsOut* tout) {
GrGLVertexBuilder* vb = pb->getVertexShaderBuilder();
tout->push_back_n(tin.count());
fInstalledTransforms.push_back_n(tin.count());
for (int i = 0; i < tin.count(); i++) {
const ProcCoords& coordTransforms = tin[i];
fInstalledTransforms[i].push_back_n(coordTransforms.count());
for (int t = 0; t < coordTransforms.count(); t++) {
SkString strUniName("StageMatrix");
strUniName.appendf("_%i_%i", i, t);
GrSLType varyingType;
GrCoordSet coordType = coordTransforms[t]->sourceCoords();
uint32_t type = coordTransforms[t]->getMatrix().getType();
if (kLocal_GrCoordSet == coordType) {
type |= localMatrix.getType();
}
varyingType = SkToBool(SkMatrix::kPerspective_Mask & type) ? kVec3f_GrSLType :
kVec2f_GrSLType;
GrSLPrecision precision = coordTransforms[t]->precision();
const char* uniName;
fInstalledTransforms[i][t].fHandle =
pb->addUniform(GrGLProgramBuilder::kVertex_Visibility,
kMat33f_GrSLType, precision,
strUniName.c_str(),
&uniName).toShaderBuilderIndex();
SkString strVaryingName("MatrixCoord");
strVaryingName.appendf("_%i_%i", i, t);
GrGLVertToFrag v(varyingType);
pb->addVarying(strVaryingName.c_str(), &v, precision);
SkASSERT(kVec2f_GrSLType == varyingType || kVec3f_GrSLType == varyingType);
SkNEW_APPEND_TO_TARRAY(&(*tout)[i], GrGLProcessor::TransformedCoords,
(SkString(v.fsIn()), varyingType));
// varying = matrix * coords (logically)
if (kDevice_GrCoordSet == coordType) {
if (kVec2f_GrSLType == varyingType) {
if (kVec2f_GrSLType == posVar.getType()) {
vb->codeAppendf("%s = (%s * vec3(%s, 1)).xy;",
v.vsOut(), uniName, posVar.c_str());
} else {
// The brackets here are just to scope the temp variable
vb->codeAppendf("{ vec3 temp = %s * %s;", uniName, posVar.c_str());
vb->codeAppendf("%s = vec2(temp.x/temp.z, temp.y/temp.z); }", v.vsOut());
}
} else {
if (kVec2f_GrSLType == posVar.getType()) {
vb->codeAppendf("%s = %s * vec3(%s, 1);",
v.vsOut(), uniName, posVar.c_str());
} else {
vb->codeAppendf("%s = %s * %s;", v.vsOut(), uniName, posVar.c_str());
}
}
} else {
if (kVec2f_GrSLType == varyingType) {
vb->codeAppendf("%s = (%s * vec3(%s, 1)).xy;", v.vsOut(), uniName, localCoords);
} else {
vb->codeAppendf("%s = %s * vec3(%s, 1);", v.vsOut(), uniName, localCoords);
}
}
}
}
}
示例7: emitCode
void GrGLGeometryProcessor::emitCode(EmitArgs& args) {
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGPArgs gpArgs;
this->onEmitCode(args, &gpArgs);
vsBuilder->transformToNormalizedDeviceSpace(gpArgs.fPositionVar);
}
示例8: onEmitCode
void GrGLConicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
const GrConicEffect& gp = args.fGP.cast<GrConicEffect>();
const ConicBatchTracker& local = args.fBT.cast<ConicBatchTracker>();
// emit attributes
vsBuilder->emitAttributes(gp);
GrGLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("ConicCoeffs", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inConicCoeffs()->fName);
// Setup pass through color
this->setupColorPassThrough(args.fPB, local.fInputColorType, args.fOutputColor, NULL,
&fColorUniform);
// Setup position
this->setupPosition(pb, gpArgs, gp.inPosition()->fName, gp.viewMatrix());
// emit transforms with position
this->emitTransforms(pb, gpArgs->fPositionVar, gp.inPosition()->fName, gp.localMatrix(),
args.fTransformsIn, args.fTransformsOut);
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppend("float edgeAlpha;");
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fsBuilder->codeAppendf("float func = %s.x*%s.x - %s.y*%s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("func = abs(func);");
fsBuilder->codeAppend("edgeAlpha = func / gFM;");
fsBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fsBuilder->codeAppendf("float func = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha = func / gFM;");
fsBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillBW_GrProcessorEdgeType: {
fsBuilder->codeAppendf("edgeAlpha = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);");
break;
}
default:
SkFAIL("Shouldn't get here");
}
if (0xff != local.fCoverageScale) {
const char* coverageScale;
fCoverageScaleUniform = pb->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"Coverage",
&coverageScale);
fsBuilder->codeAppendf("%s = vec4(%s * edgeAlpha);", args.fOutputCoverage, coverageScale);
} else {
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
}