本文整理汇总了C++中GrGLSLUniformHandler::getUniformCStr方法的典型用法代码示例。如果您正苦于以下问题:C++ GrGLSLUniformHandler::getUniformCStr方法的具体用法?C++ GrGLSLUniformHandler::getUniformCStr怎么用?C++ GrGLSLUniformHandler::getUniformCStr使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GrGLSLUniformHandler
的用法示例。
在下文中一共展示了GrGLSLUniformHandler::getUniformCStr方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: emitCode
void emitCode(EmitArgs& args) override {
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fMatrixHandle = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kMat44f_GrSLType, kDefault_GrSLPrecision,
"ColorMatrix");
fVectorHandle = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"ColorMatrixVector");
if (nullptr == args.fInputColor) {
// could optimize this case, but we aren't for now.
args.fInputColor = "vec4(1)";
}
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// The max() is to guard against 0 / 0 during unpremul when the incoming color is
// transparent black.
fragBuilder->codeAppendf("\tfloat nonZeroAlpha = max(%s.a, 0.00001);\n",
args.fInputColor);
fragBuilder->codeAppendf("\t%s = %s * vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha) + %s;\n",
args.fOutputColor,
uniformHandler->getUniformCStr(fMatrixHandle),
args.fInputColor,
uniformHandler->getUniformCStr(fVectorHandle));
fragBuilder->codeAppendf("\t%s = clamp(%s, 0.0, 1.0);\n",
args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
}
示例2: emitCode
void GrGLConvolutionEffect::emitCode(EmitArgs& args) {
const GrConvolutionEffect& ce = args.fFp.cast<GrConvolutionEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fImageIncrementUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
if (ce.useBounds()) {
fBoundsUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Bounds");
}
int width = Gr1DKernelEffect::WidthFromRadius(ce.radius());
fKernelUni = uniformHandler->addUniformArray(GrGLSLUniformHandler::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Kernel", width);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->codeAppendf("%s = vec4(0, 0, 0, 0);", args.fOutputColor);
const GrGLSLShaderVar& kernel = uniformHandler->getUniformVariable(fKernelUni);
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
fragBuilder->codeAppendf("vec2 coord = %s - %d.0 * %s;", coords2D.c_str(), ce.radius(), imgInc);
// Manually unroll loop because some drivers don't; yields 20-30% speedup.
for (int i = 0; i < width; i++) {
SkString index;
SkString kernelIndex;
index.appendS32(i);
kernel.appendArrayAccess(index.c_str(), &kernelIndex);
if (ce.useBounds()) {
// We used to compute a bool indicating whether we're in bounds or not, cast it to a
// float, and then mul weight*texture_sample by the float. However, the Adreno 430 seems
// to have a bug that caused corruption.
const char* bounds = uniformHandler->getUniformCStr(fBoundsUni);
const char* component = ce.direction() == Gr1DKernelEffect::kY_Direction ? "y" : "x";
fragBuilder->codeAppendf("if (coord.%s >= %s.x && coord.%s <= %s.y) {",
component, bounds, component, bounds);
}
fragBuilder->codeAppendf("\t\t%s += ", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fragBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str());
if (ce.useBounds()) {
fragBuilder->codeAppend("}");
}
fragBuilder->codeAppendf("\t\tcoord += %s;\n", imgInc);
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}
示例3: max
void GrColorCubeEffect::GLSLProcessor::emitCode(EmitArgs& args) {
if (nullptr == args.fInputColor) {
args.fInputColor = "vec4(1)";
}
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fColorCubeSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Size");
const char* colorCubeSizeUni = uniformHandler->getUniformCStr(fColorCubeSizeUni);
fColorCubeInvSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"InvSize");
const char* colorCubeInvSizeUni = uniformHandler->getUniformCStr(fColorCubeInvSizeUni);
const char* nonZeroAlpha = "nonZeroAlpha";
const char* unPMColor = "unPMColor";
const char* cubeIdx = "cubeIdx";
const char* cCoords1 = "cCoords1";
const char* cCoords2 = "cCoords2";
// Note: if implemented using texture3D in OpenGL ES older than OpenGL ES 3.0,
// the shader might need "#extension GL_OES_texture_3D : enable".
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Unpremultiply color
fragBuilder->codeAppendf("\tfloat %s = max(%s.a, 0.00001);\n", nonZeroAlpha, args.fInputColor);
fragBuilder->codeAppendf("\tvec4 %s = vec4(%s.rgb / %s, %s);\n",
unPMColor, args.fInputColor, nonZeroAlpha, nonZeroAlpha);
// Fit input color into the cube.
fragBuilder->codeAppendf(
"vec3 %s = vec3(%s.rg * vec2((%s - 1.0) * %s) + vec2(0.5 * %s), %s.b * (%s - 1.0));\n",
cubeIdx, unPMColor, colorCubeSizeUni, colorCubeInvSizeUni, colorCubeInvSizeUni,
unPMColor, colorCubeSizeUni);
// Compute y coord for for texture fetches.
fragBuilder->codeAppendf("vec2 %s = vec2(%s.r, (floor(%s.b) + %s.g) * %s);\n",
cCoords1, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
fragBuilder->codeAppendf("vec2 %s = vec2(%s.r, (ceil(%s.b) + %s.g) * %s);\n",
cCoords2, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
// Apply the cube.
fragBuilder->codeAppendf("%s = vec4(mix(", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], cCoords1);
fragBuilder->codeAppend(".bgr, ");
fragBuilder->appendTextureLookup(args.fSamplers[0], cCoords2);
// Premultiply color by alpha. Note that the input alpha is not modified by this shader.
fragBuilder->codeAppendf(".bgr, fract(%s.b)) * vec3(%s), %s.a);\n",
cubeIdx, nonZeroAlpha, args.fInputColor);
}
示例4: emitCode
void GrGLMagnifierEffect::emitCode(EmitArgs& args) {
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fOffsetVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Offset");
fInvZoomVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"InvZoom");
fInvInsetVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"InvInset");
fBoundsVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"Bounds");
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fragBuilder->codeAppendf("\t\tvec2 zoom_coord = %s + %s * %s;\n",
uniformHandler->getUniformCStr(fOffsetVar),
coords2D.c_str(),
uniformHandler->getUniformCStr(fInvZoomVar));
const char* bounds = uniformHandler->getUniformCStr(fBoundsVar);
fragBuilder->codeAppendf("\t\tvec2 delta = (coord - %s.xy) * %s.zw;\n", bounds, bounds);
fragBuilder->codeAppendf("\t\tdelta = min(delta, vec2(1.0, 1.0) - delta);\n");
fragBuilder->codeAppendf("\t\tdelta = delta * %s;\n",
uniformHandler->getUniformCStr(fInvInsetVar));
fragBuilder->codeAppend("\t\tfloat weight = 0.0;\n");
fragBuilder->codeAppend("\t\tif (delta.s < 2.0 && delta.t < 2.0) {\n");
fragBuilder->codeAppend("\t\t\tdelta = vec2(2.0, 2.0) - delta;\n");
fragBuilder->codeAppend("\t\t\tfloat dist = length(delta);\n");
fragBuilder->codeAppend("\t\t\tdist = max(2.0 - dist, 0.0);\n");
fragBuilder->codeAppend("\t\t\tweight = min(dist * dist, 1.0);\n");
fragBuilder->codeAppend("\t\t} else {\n");
fragBuilder->codeAppend("\t\t\tvec2 delta_squared = delta * delta;\n");
fragBuilder->codeAppend("\t\t\tweight = min(min(delta_squared.x, delta_squared.y), 1.0);\n");
fragBuilder->codeAppend("\t\t}\n");
fragBuilder->codeAppend("\t\tvec2 mix_coord = mix(coord, zoom_coord, weight);\n");
fragBuilder->codeAppend("\t\tvec4 output_color = ");
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "mix_coord");
fragBuilder->codeAppend(";\n");
fragBuilder->codeAppendf("\t\t%s = output_color;", args.fOutputColor);
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}
示例5: emitCode
void GrGLAlphaThresholdFragmentProcessor::emitCode(EmitArgs& args) {
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fInnerThresholdVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"inner_threshold");
fOuterThresholdVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"outer_threshold");
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
SkString maskCoords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 1);
fragBuilder->codeAppendf("vec2 coord = %s;", coords2D.c_str());
fragBuilder->codeAppendf("vec2 mask_coord = %s;", maskCoords2D.c_str());
fragBuilder->codeAppend("vec4 input_color = ");
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "coord");
fragBuilder->codeAppend(";");
fragBuilder->codeAppend("vec4 mask_color = ");
fragBuilder->appendTextureLookup(args.fTexSamplers[1], "mask_coord");
fragBuilder->codeAppend(";");
fragBuilder->codeAppendf("float inner_thresh = %s;",
uniformHandler->getUniformCStr(fInnerThresholdVar));
fragBuilder->codeAppendf("float outer_thresh = %s;",
uniformHandler->getUniformCStr(fOuterThresholdVar));
fragBuilder->codeAppend("float mask = mask_color.a;");
fragBuilder->codeAppend("vec4 color = input_color;");
fragBuilder->codeAppend("if (mask < 0.5) {"
"if (color.a > outer_thresh) {"
"float scale = outer_thresh / color.a;"
"color.rgb *= scale;"
"color.a = outer_thresh;"
"}"
"} else if (color.a < inner_thresh) {"
"float scale = inner_thresh / max(0.001, color.a);"
"color.rgb *= scale;"
"color.a = inner_thresh;"
"}");
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr4("color")).c_str());
}
示例6: appendTextureLookup
void GrGLSLShaderBuilder::appendTextureLookup(SkString* out,
const GrGLSLTextureSampler& sampler,
const char* coordName,
GrSLType varyingType) const {
const GrGLSLCaps* glslCaps = fProgramBuilder->glslCaps();
GrGLSLUniformHandler* uniformHandler = fProgramBuilder->uniformHandler();
GrSLType samplerType = uniformHandler->getUniformVariable(sampler.fSamplerUniform).getType();
if (samplerType == kSampler2DRect_GrSLType) {
if (varyingType == kVec2f_GrSLType) {
out->appendf("%s(%s, textureSize(%s) * %s)",
GrGLSLTexture2DFunctionName(varyingType, samplerType,
glslCaps->generation()),
uniformHandler->getUniformCStr(sampler.fSamplerUniform),
uniformHandler->getUniformCStr(sampler.fSamplerUniform),
coordName);
} else {
out->appendf("%s(%s, vec3(textureSize(%s) * %s.xy, %s.z))",
GrGLSLTexture2DFunctionName(varyingType, samplerType,
glslCaps->generation()),
uniformHandler->getUniformCStr(sampler.fSamplerUniform),
uniformHandler->getUniformCStr(sampler.fSamplerUniform),
coordName,
coordName);
}
} else {
out->appendf("%s(%s, %s)",
GrGLSLTexture2DFunctionName(varyingType, samplerType, glslCaps->generation()),
uniformHandler->getUniformCStr(sampler.fSamplerUniform),
coordName);
}
// This refers to any swizzling we may need to get from some backend internal format to the
// format used in GrPixelConfig. If this is implemented by the GrGpu object, then swizzle will
// be rgba. For shader prettiness we omit the swizzle rather than appending ".rgba".
const GrSwizzle& configSwizzle = glslCaps->configTextureSwizzle(sampler.config());
if (configSwizzle != GrSwizzle::RGBA()) {
out->appendf(".%s", configSwizzle.c_str());
}
}
示例7: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const PLSFinishEffect& fe = args.fGP.cast<PLSFinishEffect>();
GrGLSLVertexBuilder* vsBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fUseEvenOdd = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kLow_GrSLPrecision,
"useEvenOdd");
const char* useEvenOdd = uniformHandler->getUniformCStr(fUseEvenOdd);
varyingHandler->emitAttributes(fe);
this->setupPosition(vsBuilder, gpArgs, fe.inPosition()->fName);
this->emitTransforms(vsBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar,
fe.inPosition()->fName, fe.localMatrix(), args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = args.fFragBuilder;
SkAssertResult(fsBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kPixelLocalStorage_GLSLFeature));
fsBuilder->declAppendf(GR_GL_PLS_PATH_DATA_DECL);
fsBuilder->codeAppend("float coverage;");
fsBuilder->codeAppendf("if (%s != 0.0) {", useEvenOdd);
fsBuilder->codeAppend("coverage = float(abs(pls.windings[0]) % 2) * 0.25;");
fsBuilder->codeAppend("coverage += float(abs(pls.windings[1]) % 2) * 0.25;");
fsBuilder->codeAppend("coverage += float(abs(pls.windings[2]) % 2) * 0.25;");
fsBuilder->codeAppend("coverage += float(abs(pls.windings[3]) % 2) * 0.25;");
fsBuilder->codeAppend("} else {");
fsBuilder->codeAppend("coverage = pls.windings[0] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("coverage += pls.windings[1] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("coverage += pls.windings[2] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("coverage += pls.windings[3] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("}");
if (!fe.colorIgnored()) {
this->setupUniformColor(fsBuilder, uniformHandler, args.fOutputColor,
&fColorUniform);
}
fsBuilder->codeAppendf("%s = vec4(coverage);", args.fOutputCoverage);
fsBuilder->codeAppendf("%s = vec4(1.0, 0.0, 1.0, 1.0);", args.fOutputColor);
}
示例8: emitCode
void GrGLMorphologyEffect::emitCode(EmitArgs& args) {
const GrMorphologyEffect& me = args.fFp.cast<GrMorphologyEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fPixelSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"PixelSize");
const char* pixelSizeInc = uniformHandler->getUniformCStr(fPixelSizeUni);
fRangeUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Range");
const char* range = uniformHandler->getUniformCStr(fRangeUni);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
const char* func;
switch (me.type()) {
case GrMorphologyEffect::kErode_MorphologyType:
fragBuilder->codeAppendf("\t\t%s = vec4(1, 1, 1, 1);\n", args.fOutputColor);
func = "min";
break;
case GrMorphologyEffect::kDilate_MorphologyType:
fragBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor);
func = "max";
break;
default:
SkFAIL("Unexpected type");
func = ""; // suppress warning
break;
}
const char* dir;
switch (me.direction()) {
case Gr1DKernelEffect::kX_Direction:
dir = "x";
break;
case Gr1DKernelEffect::kY_Direction:
dir = "y";
break;
default:
SkFAIL("Unknown filter direction.");
dir = ""; // suppress warning
}
int width = GrMorphologyEffect::WidthFromRadius(me.radius());
// vec2 coord = coord2D;
fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
// coord.x -= radius * pixelSize;
fragBuilder->codeAppendf("\t\tcoord.%s -= %d.0 * %s; \n", dir, me.radius(), pixelSizeInc);
if (me.useRange()) {
// highBound = min(highBound, coord.x + (width-1) * pixelSize);
fragBuilder->codeAppendf("\t\tfloat highBound = min(%s.y, coord.%s + %f * %s);",
range, dir, float(width - 1), pixelSizeInc);
// coord.x = max(lowBound, coord.x);
fragBuilder->codeAppendf("\t\tcoord.%s = max(%s.x, coord.%s);", dir, range, dir);
}
fragBuilder->codeAppendf("\t\tfor (int i = 0; i < %d; i++) {\n", width);
fragBuilder->codeAppendf("\t\t\t%s = %s(%s, ", args.fOutputColor, func, args.fOutputColor);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "coord");
fragBuilder->codeAppend(");\n");
// coord.x += pixelSize;
fragBuilder->codeAppendf("\t\t\tcoord.%s += %s;\n", dir, pixelSizeInc);
if (me.useRange()) {
// coord.x = min(highBound, coord.x);
fragBuilder->codeAppendf("\t\t\tcoord.%s = min(highBound, coord.%s);", dir, dir);
}
fragBuilder->codeAppend("\t\t}\n");
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}
示例9: emitCode
void GrGLPerlinNoise::emitCode(EmitArgs& args) {
const GrPerlinNoiseEffect& pne = args.fFp.cast<GrPerlinNoiseEffect>();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"baseFrequency");
const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni);
const char* stitchDataUni = nullptr;
if (pne.stitchTiles()) {
fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"stitchData");
stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni);
}
// There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
const char* chanCoordR = "0.125";
const char* chanCoordG = "0.375";
const char* chanCoordB = "0.625";
const char* chanCoordA = "0.875";
const char* chanCoord = "chanCoord";
const char* stitchData = "stitchData";
const char* ratio = "ratio";
const char* noiseVec = "noiseVec";
const char* noiseSmooth = "noiseSmooth";
const char* floorVal = "floorVal";
const char* fractVal = "fractVal";
const char* uv = "uv";
const char* ab = "ab";
const char* latticeIdx = "latticeIdx";
const char* bcoords = "bcoords";
const char* lattice = "lattice";
const char* inc8bit = "0.00390625"; // 1.0 / 256.0
// This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
// [-1,1] vector and perform a dot product between that vector and the provided vector.
const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";
// Add noise function
static const GrGLSLShaderVar gPerlinNoiseArgs[] = {
GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
GrGLSLShaderVar(noiseVec, kVec2f_GrSLType)
};
static const GrGLSLShaderVar gPerlinNoiseStitchArgs[] = {
GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
GrGLSLShaderVar(noiseVec, kVec2f_GrSLType),
GrGLSLShaderVar(stitchData, kVec2f_GrSLType)
};
SkString noiseCode;
noiseCode.appendf("\tvec4 %s;\n", floorVal);
noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec);
noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal);
noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec);
// smooth curve : t * t * (3 - 2 * t)
noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);",
noiseSmooth, fractVal, fractVal, fractVal);
// Adjust frequencies if we're stitching tiles
if (pne.stitchTiles()) {
noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
floorVal, stitchData, floorVal, stitchData);
}
// Get texture coordinates and normalize
noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n",
floorVal, floorVal);
// Get permutation for x
{
SkString xCoords("");
xCoords.appendf("vec2(%s.x, 0.5)", floorVal);
noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
kVec2f_GrSLType);
noiseCode.append(".r;");
}
// Get permutation for x + 1
{
SkString xCoords("");
xCoords.appendf("vec2(%s.z, 0.5)", floorVal);
noiseCode.appendf("\n\t%s.y = ", latticeIdx);
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
kVec2f_GrSLType);
//.........这里部分代码省略.........
示例10: emitCode
void GrGLBicubicEffect::emitCode(EmitArgs& args) {
const GrTextureDomain& domain = args.fFp.cast<GrBicubicEffect>().domain();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fCoefficientsUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kMat44f_GrSLType, kDefault_GrSLPrecision,
"Coefficients");
fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
const char* coeff = uniformHandler->getUniformCStr(fCoefficientsUni);
SkString cubicBlendName;
static const GrGLSLShaderVar gCubicBlendArgs[] = {
GrGLSLShaderVar("coefficients", kMat44f_GrSLType),
GrGLSLShaderVar("t", kFloat_GrSLType),
GrGLSLShaderVar("c0", kVec4f_GrSLType),
GrGLSLShaderVar("c1", kVec4f_GrSLType),
GrGLSLShaderVar("c2", kVec4f_GrSLType),
GrGLSLShaderVar("c3", kVec4f_GrSLType),
};
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->emitFunction(kVec4f_GrSLType,
"cubicBlend",
SK_ARRAY_COUNT(gCubicBlendArgs),
gCubicBlendArgs,
"\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
"\tvec4 c = coefficients * ts;\n"
"\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
&cubicBlendName);
fragBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
// We unnormalize the coord in order to determine our fractional offset (f) within the texel
// We then snap coord to a texel center and renormalize. The snap prevents cases where the
// starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
// double hit a texel.
fragBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
fragBuilder->codeAppend("\tvec2 f = fract(coord);\n");
fragBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
fragBuilder->codeAppend("\tvec4 rowColors[4];\n");
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
SkString coord;
coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
SkString sampleVar;
sampleVar.printf("rowColors[%d]", x);
fDomain.sampleTexture(fragBuilder,
args.fUniformHandler,
args.fGLSLCaps,
domain,
sampleVar.c_str(),
coord,
args.fTexSamplers[0]);
}
fragBuilder->codeAppendf(
"\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n",
y, cubicBlendName.c_str(), coeff);
}
SkString bicubicColor;
bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff);
fragBuilder->codeAppendf("\t%s = %s;\n",
args.fOutputColor, (GrGLSLExpr4(bicubicColor.c_str()) *
GrGLSLExpr4(args.fInputColor)).c_str());
}
示例11: emitCode
void GrGLBicubicEffect::emitCode(EmitArgs& args) {
const GrBicubicEffect& bicubicEffect = args.fFp.cast<GrBicubicEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
fColorSpaceHelper.emitCode(uniformHandler, bicubicEffect.colorSpaceXform());
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
/*
* Filter weights come from Don Mitchell & Arun Netravali's 'Reconstruction Filters in Computer
* Graphics', ACM SIGGRAPH Computer Graphics 22, 4 (Aug. 1988).
* ACM DL: http://dl.acm.org/citation.cfm?id=378514
* Free : http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*
* The authors define a family of cubic filters with two free parameters (B and C):
*
* { (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) if |x| < 1
* k(x) = 1/6 { (-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) if 1 <= |x| < 2
* { 0 otherwise
*
* Various well-known cubic splines can be generated, and the authors select (1/3, 1/3) as their
* favorite overall spline - this is now commonly known as the Mitchell filter, and is the
* source of the specific weights below.
*
* This is GLSL, so the matrix is column-major (transposed from standard matrix notation).
*/
fragBuilder->codeAppend("mat4 kMitchellCoefficients = mat4("
" 1.0 / 18.0, 16.0 / 18.0, 1.0 / 18.0, 0.0 / 18.0,"
"-9.0 / 18.0, 0.0 / 18.0, 9.0 / 18.0, 0.0 / 18.0,"
"15.0 / 18.0, -36.0 / 18.0, 27.0 / 18.0, -6.0 / 18.0,"
"-7.0 / 18.0, 21.0 / 18.0, -21.0 / 18.0, 7.0 / 18.0);");
fragBuilder->codeAppendf("vec2 coord = %s - %s * vec2(0.5);", coords2D.c_str(), imgInc);
// We unnormalize the coord in order to determine our fractional offset (f) within the texel
// We then snap coord to a texel center and renormalize. The snap prevents cases where the
// starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
// double hit a texel.
fragBuilder->codeAppendf("coord /= %s;", imgInc);
fragBuilder->codeAppend("vec2 f = fract(coord);");
fragBuilder->codeAppendf("coord = (coord - f + vec2(0.5)) * %s;", imgInc);
fragBuilder->codeAppend("vec4 wx = kMitchellCoefficients * vec4(1.0, f.x, f.x * f.x, f.x * f.x * f.x);");
fragBuilder->codeAppend("vec4 wy = kMitchellCoefficients * vec4(1.0, f.y, f.y * f.y, f.y * f.y * f.y);");
fragBuilder->codeAppend("vec4 rowColors[4];");
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
SkString coord;
coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
SkString sampleVar;
sampleVar.printf("rowColors[%d]", x);
fDomain.sampleTexture(fragBuilder,
args.fUniformHandler,
args.fShaderCaps,
bicubicEffect.domain(),
sampleVar.c_str(),
coord,
args.fTexSamplers[0]);
}
fragBuilder->codeAppendf(
"vec4 s%d = wx.x * rowColors[0] + wx.y * rowColors[1] + wx.z * rowColors[2] + wx.w * rowColors[3];",
y);
}
SkString bicubicColor("(wy.x * s0 + wy.y * s1 + wy.z * s2 + wy.w * s3)");
if (fColorSpaceHelper.isValid()) {
SkString xformedColor;
fragBuilder->appendColorGamutXform(&xformedColor, bicubicColor.c_str(), &fColorSpaceHelper);
bicubicColor.swap(xformedColor);
}
fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputColor, bicubicColor.c_str(),
args.fInputColor);
}
示例12: emitCode
void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
const GrTextureDomain& domain = mce.domain();
int kWidth = mce.kernelSize().width();
int kHeight = mce.kernelSize().height();
int arrayCount = (kWidth * kHeight + 3) / 4;
SkASSERT(4 * arrayCount >= kWidth * kHeight);
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
"ImageIncrement");
fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kHalf4_GrSLType,
"Kernel",
arrayCount);
fKernelOffsetUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
"KernelOffset");
fGainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Gain");
fBiasUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Bias");
const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni);
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
const char* gain = uniformHandler->getUniformCStr(fGainUni);
const char* bias = uniformHandler->getUniformCStr(fBiasUni);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);");
fragBuilder->codeAppendf("float2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc);
fragBuilder->codeAppend("half4 c;");
const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" };
for (int y = 0; y < kHeight; y++) {
for (int x = 0; x < kWidth; x++) {
GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
int offset = y*kWidth + x;
fragBuilder->codeAppendf("half k = %s[%d]%s;", kernel, offset / 4,
kVecSuffix[offset & 0x3]);
SkString coord;
coord.printf("coord + half2(%d, %d) * %s", x, y, imgInc);
fDomain.sampleTexture(fragBuilder,
uniformHandler,
args.fShaderCaps,
domain,
"c",
coord,
args.fTexSamplers[0]);
if (!mce.convolveAlpha()) {
fragBuilder->codeAppend("c.rgb /= c.a;");
fragBuilder->codeAppend("c.rgb = clamp(c.rgb, 0.0, 1.0);");
}
fragBuilder->codeAppend("sum += c * k;");
}
}
if (mce.convolveAlpha()) {
fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.a = clamp(%s.a, 0, 1);", args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
args.fOutputColor, args.fOutputColor, args.fOutputColor);
} else {
fDomain.sampleTexture(fragBuilder,
uniformHandler,
args.fShaderCaps,
domain,
"c",
coords2D,
args.fTexSamplers[0]);
fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
fragBuilder->codeAppendf("%s.rgb = clamp(sum.rgb * %s + %s, 0, 1);", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
}
fragBuilder->codeAppendf("%s *= %s;\n", args.fOutputColor, args.fInputColor);
}
示例13: emitCode
void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
const GrTextureDomain& domain = args.fFp.cast<GrMatrixConvolutionEffect>().domain();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fImageIncrementUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
fKernelUni = uniformHandler->addUniformArray(GrGLSLUniformHandler::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Kernel",
fKernelSize.width() * fKernelSize.height());
fKernelOffsetUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"KernelOffset");
fGainUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision, "Gain");
fBiasUni = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision, "Bias");
const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni);
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
const char* gain = uniformHandler->getUniformCStr(fGainUni);
const char* bias = uniformHandler->getUniformCStr(fBiasUni);
int kWidth = fKernelSize.width();
int kHeight = fKernelSize.height();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->codeAppend("vec4 sum = vec4(0, 0, 0, 0);");
fragBuilder->codeAppendf("vec2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc);
fragBuilder->codeAppend("vec4 c;");
for (int y = 0; y < kHeight; y++) {
for (int x = 0; x < kWidth; x++) {
GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
fragBuilder->codeAppendf("float k = %s[%d * %d + %d];", kernel, y, kWidth, x);
SkString coord;
coord.printf("coord + vec2(%d, %d) * %s", x, y, imgInc);
fDomain.sampleTexture(fragBuilder,
uniformHandler,
args.fGLSLCaps,
domain,
"c",
coord,
args.fSamplers[0]);
if (!fConvolveAlpha) {
fragBuilder->codeAppend("c.rgb /= c.a;");
fragBuilder->codeAppend("c.rgb = clamp(c.rgb, 0.0, 1.0);");
}
fragBuilder->codeAppend("sum += c * k;");
}
}
if (fConvolveAlpha) {
fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
args.fOutputColor, args.fOutputColor, args.fOutputColor);
} else {
fDomain.sampleTexture(fragBuilder,
uniformHandler,
args.fGLSLCaps,
domain,
"c",
coords2D,
args.fSamplers[0]);
fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
fragBuilder->codeAppendf("%s.rgb = sum.rgb * %s + %s;", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}