本文整理汇总了C++中GrGLSLPPFragmentBuilder::codeAppendf方法的典型用法代码示例。如果您正苦于以下问题:C++ GrGLSLPPFragmentBuilder::codeAppendf方法的具体用法?C++ GrGLSLPPFragmentBuilder::codeAppendf怎么用?C++ GrGLSLPPFragmentBuilder::codeAppendf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GrGLSLPPFragmentBuilder
的用法示例。
在下文中一共展示了GrGLSLPPFragmentBuilder::codeAppendf方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const MSAAQuadProcessor& qp = args.fGP.cast<MSAAQuadProcessor>();
GrGLSLVertexBuilder* vsBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(qp);
varyingHandler->addPassThroughAttribute(qp.inColor(), args.fOutputColor);
GrGLSLVertToFrag uv(kVec2f_GrSLType);
varyingHandler->addVarying("uv", &uv, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", uv.vsOut(), qp.inUV()->fName);
// Setup position
this->setupPosition(vsBuilder, uniformHandler, gpArgs, qp.inPosition()->fName,
qp.viewMatrix(), &fViewMatrixUniform);
// emit transforms
this->emitTransforms(vsBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar,
qp.inPosition()->fName, SkMatrix::I(), args.fTransformsIn,
args.fTransformsOut);
GrGLSLPPFragmentBuilder* fsBuilder = args.fFragBuilder;
fsBuilder->codeAppendf("if (%s.x * %s.x >= %s.y) discard;", uv.fsIn(), uv.fsIn(),
uv.fsIn());
fsBuilder->codeAppendf("%s = vec4(1.0);", args.fOutputCoverage);
}
示例2: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(qe);
GrGLSLVertToFrag v(kVec4f_GrSLType);
varyingHandler->addVarying("QuadEdge", &v);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName);
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!qe.colorIgnored()) {
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor,
&fColorUniform);
}
// Setup position
this->setupPosition(vertBuilder, gpArgs, qe.inPosition()->fName);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
qe.inPosition()->fName,
qe.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fragBuilder->codeAppendf("float edgeAlpha;");
// keep the derivative instructions outside the conditional
fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn());
// today we know z and w are in device space. We could use derivatives
fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(),
v.fsIn());
fragBuilder->codeAppendf ("} else {");
fragBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,"
" 2.0*%s.x*duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(),
v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = "
"clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}");
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
示例3: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const GrRRectShadowGeoProc& rsgp = args.fGP.cast<GrRRectShadowGeoProc>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
// emit attributes
varyingHandler->emitAttributes(rsgp);
fragBuilder->codeAppend("vec4 shadowParams;");
varyingHandler->addPassThroughAttribute(rsgp.inShadowParams(), "shadowParams");
// setup pass through color
varyingHandler->addPassThroughAttribute(rsgp.inColor(), args.fOutputColor);
// Setup position
this->setupPosition(vertBuilder, gpArgs, rsgp.inPosition()->fName);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
rsgp.inPosition()->fName,
args.fFPCoordTransformHandler);
fragBuilder->codeAppend("float d = length(shadowParams.xy);");
fragBuilder->codeAppend("float distance = shadowParams.z * (1.0 - d);");
fragBuilder->codeAppend("float factor = 1.0 - clamp(distance, 0.0, shadowParams.w);");
fragBuilder->codeAppend("factor = exp(-factor * factor * 4.0) - 0.018;");
fragBuilder->codeAppendf("%s = vec4(factor);",
args.fOutputCoverage);
}
示例4: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const PLSFinishEffect& fe = args.fGP.cast<PLSFinishEffect>();
GrGLSLVertexBuilder* vsBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fUseEvenOdd = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kLow_GrSLPrecision,
"useEvenOdd");
const char* useEvenOdd = uniformHandler->getUniformCStr(fUseEvenOdd);
varyingHandler->emitAttributes(fe);
this->setupPosition(vsBuilder, gpArgs, fe.inPosition()->fName);
this->emitTransforms(vsBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar,
fe.inPosition()->fName, fe.localMatrix(), args.fTransformsIn,
args.fTransformsOut);
GrGLSLPPFragmentBuilder* fsBuilder = args.fFragBuilder;
SkAssertResult(fsBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kPixelLocalStorage_GLSLFeature));
fsBuilder->declAppendf(GR_GL_PLS_PATH_DATA_DECL);
fsBuilder->codeAppend("float coverage;");
fsBuilder->codeAppendf("if (%s != 0.0) {", useEvenOdd);
fsBuilder->codeAppend("coverage = float(abs(pls.windings[0]) % 2) * 0.25;");
fsBuilder->codeAppend("coverage += float(abs(pls.windings[1]) % 2) * 0.25;");
fsBuilder->codeAppend("coverage += float(abs(pls.windings[2]) % 2) * 0.25;");
fsBuilder->codeAppend("coverage += float(abs(pls.windings[3]) % 2) * 0.25;");
fsBuilder->codeAppend("} else {");
fsBuilder->codeAppend("coverage = pls.windings[0] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("coverage += pls.windings[1] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("coverage += pls.windings[2] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("coverage += pls.windings[3] != 0 ? 0.25 : 0.0;");
fsBuilder->codeAppend("}");
if (!fe.colorIgnored()) {
this->setupUniformColor(fsBuilder, uniformHandler, args.fOutputColor,
&fColorUniform);
}
fsBuilder->codeAppendf("%s = vec4(coverage);", args.fOutputCoverage);
fsBuilder->codeAppendf("%s = vec4(1.0, 0.0, 1.0, 1.0);", args.fOutputColor);
}
示例5: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrPipelineDynamicStateTestProcessor& mp =
args.fGP.cast<GrPipelineDynamicStateTestProcessor>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
varyingHandler->emitAttributes(mp);
varyingHandler->addPassThroughAttribute(&mp.fColor, args.fOutputColor);
GrGLSLVertexBuilder* v = args.fVertBuilder;
v->codeAppendf("vec2 vertex = %s;", mp.fVertex.fName);
gpArgs->fPositionVar.set(kVec2f_GrSLType, "vertex");
GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
}
示例6: onEmitCode
void GrGLConicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
const GrConicEffect& gp = args.fGP.cast<GrConicEffect>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(gp);
GrGLSLVertToFrag v(kVec4f_GrSLType);
varyingHandler->addVarying("ConicCoeffs", &v, kHigh_GrSLPrecision);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inConicCoeffs()->fName);
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform);
// Setup position
this->setupPosition(vertBuilder,
uniformHandler,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
// emit transforms with position
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
gp.inPosition()->fName,
gp.localMatrix(),
args.fFPCoordTransformHandler);
// TODO: this precision check should actually be a check on the number of bits
// high and medium provide and the selection of the lowest level that suffices.
// Additionally we should assert that the upstream code only lets us get here if
// either high or medium provides the required number of bits.
GrSLPrecision precision = kHigh_GrSLPrecision;
const GrShaderCaps::PrecisionInfo& highP = args.fShaderCaps->getFloatShaderPrecisionInfo(
kFragment_GrShaderType,
kHigh_GrSLPrecision);
if (!highP.supported()) {
precision = kMedium_GrSLPrecision;
}
GrShaderVar edgeAlpha("edgeAlpha", kFloat_GrSLType, 0, precision);
GrShaderVar dklmdx("dklmdx", kVec3f_GrSLType, 0, precision);
GrShaderVar dklmdy("dklmdy", kVec3f_GrSLType, 0, precision);
GrShaderVar dfdx("dfdx", kFloat_GrSLType, 0, precision);
GrShaderVar dfdy("dfdy", kFloat_GrSLType, 0, precision);
GrShaderVar gF("gF", kVec2f_GrSLType, 0, precision);
GrShaderVar gFM("gFM", kFloat_GrSLType, 0, precision);
GrShaderVar func("func", kFloat_GrSLType, 0, precision);
fragBuilder->declAppend(edgeAlpha);
fragBuilder->declAppend(dklmdx);
fragBuilder->declAppend(dklmdy);
fragBuilder->declAppend(dfdx);
fragBuilder->declAppend(dfdy);
fragBuilder->declAppend(gF);
fragBuilder->declAppend(gFM);
fragBuilder->declAppend(func);
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
fragBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s = 2.0 * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(),
v.fsIn(), dklmdx.c_str(),
v.fsIn(), dklmdx.c_str(),
v.fsIn(), dklmdx.c_str());
fragBuilder->codeAppendf("%s = 2.0 * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdy.c_str(),
v.fsIn(), dklmdy.c_str(),
v.fsIn(), dklmdy.c_str(),
v.fsIn(), dklmdy.c_str());
fragBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str());
fragBuilder->codeAppendf("%s = sqrt(dot(%s, %s));",
gFM.c_str(), gF.c_str(), gF.c_str());
fragBuilder->codeAppendf("%s = %s.x*%s.x - %s.y*%s.z;",
func.c_str(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("%s = abs(%s);", func.c_str(), func.c_str());
fragBuilder->codeAppendf("%s = %s / %s;",
edgeAlpha.c_str(), func.c_str(), gFM.c_str());
fragBuilder->codeAppendf("%s = max(1.0 - %s, 0.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
// Add line below for smooth cubic ramp
// fragBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillAA_GrProcessorEdgeType: {
fragBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s ="
"2.0 * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(),
v.fsIn(), dklmdx.c_str(),
v.fsIn(), dklmdx.c_str(),
//.........这里部分代码省略.........
示例7: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const DefaultGeoProc& gp = args.fGP.cast<DefaultGeoProc>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(gp);
// Setup pass through color
if (!gp.colorIgnored()) {
if (gp.hasVertexColor()) {
varyingHandler->addPassThroughAttribute(gp.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor,
&fColorUniform);
}
}
// Setup position
this->setupPosition(vertBuilder,
uniformHandler,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
if (gp.hasExplicitLocalCoords()) {
// emit transforms with explicit local coords
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
gp.inLocalCoords()->fName,
gp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
} else if(gp.hasTransformedLocalCoords()) {
// transforms have already been applied to vertex attributes on the cpu
this->emitTransforms(vertBuilder,
varyingHandler,
gp.inLocalCoords()->fName,
args.fTransformsIn,
args.fTransformsOut);
} else {
// emit transforms with position
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
gp.inPosition()->fName,
gp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
}
// Setup coverage as pass through
if (!gp.coverageWillBeIgnored()) {
if (gp.hasVertexCoverage()) {
fragBuilder->codeAppendf("float alpha = 1.0;");
varyingHandler->addPassThroughAttribute(gp.inCoverage(), "alpha");
fragBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
} else if (gp.coverage() == 0xff) {
fragBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
} else {
const char* fragCoverage;
fCoverageUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"Coverage",
&fragCoverage);
fragBuilder->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, fragCoverage);
}
}
}
示例8: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(cte);
// compute numbers to be hardcoded to convert texture coordinates from int to float
SkASSERT(cte.numTextures() == 1);
SkDEBUGCODE(GrTexture* atlas = cte.textureAccess(0).getTexture());
SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));
GrGLSLVertToFrag v(kVec2f_GrSLType);
varyingHandler->addVarying("TextureCoords", &v, kHigh_GrSLPrecision);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(),
cte.inTextureCoords()->fName);
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!cte.colorIgnored()) {
if (cte.hasVertexColor()) {
varyingHandler->addPassThroughAttribute(cte.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor,
&fColorUniform);
}
}
// Setup position
this->setupPosition(vertBuilder, gpArgs, cte.inPosition()->fName);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
cte.inPosition()->fName,
cte.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
if (cte.maskFormat() == kARGB_GrMaskFormat) {
fragBuilder->codeAppendf("%s = ", args.fOutputColor);
fragBuilder->appendTextureLookupAndModulate(args.fOutputColor,
args.fTexSamplers[0],
v.fsIn(),
kVec2f_GrSLType);
fragBuilder->codeAppend(";");
fragBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
} else {
fragBuilder->codeAppendf("%s = ", args.fOutputCoverage);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], v.fsIn(), kVec2f_GrSLType);
fragBuilder->codeAppend(";");
if (cte.maskFormat() == kA565_GrMaskFormat) {
// set alpha to be max of rgb coverage
fragBuilder->codeAppendf("%s.a = max(max(%s.r, %s.g), %s.b);",
args.fOutputCoverage, args.fOutputCoverage,
args.fOutputCoverage, args.fOutputCoverage);
}
}
}
示例9: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const GrDistanceFieldPathGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldPathGeoProc>();
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(dfTexEffect);
GrGLSLVertToFrag v(kVec2f_GrSLType);
varyingHandler->addVarying("TextureCoords", &v, kHigh_GrSLPrecision);
// setup pass through color
if (!dfTexEffect.colorIgnored()) {
varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor);
}
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), dfTexEffect.inTextureCoords()->fName);
// Setup position
this->setupPosition(vertBuilder,
uniformHandler,
gpArgs,
dfTexEffect.inPosition()->fName,
dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
dfTexEffect.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
const char* textureSizeUniName = nullptr;
fTextureSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"TextureSize", &textureSizeUniName);
// Use highp to work around aliasing issues
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(args.fGLSLCaps,
kHigh_GrSLPrecision));
fragBuilder->codeAppendf("vec2 uv = %s;", v.fsIn());
fragBuilder->codeAppend("float texColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[0],
"uv",
kVec2f_GrSLType);
fragBuilder->codeAppend(".r;");
fragBuilder->codeAppend("float distance = "
SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");");
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(args.fGLSLCaps,
kHigh_GrSLPrecision));
fragBuilder->codeAppendf("vec2 st = uv*%s;", textureSizeUniName);
fragBuilder->codeAppend("float afwidth;");
if (dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag) {
// For uniform scale, we adjust for the effect of the transformation on the distance
// by using the length of the gradient of the texture coordinates. We use st coordinates
// to ensure we're mapping 1:1 from texel space to pixel space.
// this gives us a smooth step across approximately one fragment
fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(st.y));");
} else {
// For general transforms, to determine the amount of correction we multiply a unit
// vector pointing along the SDF gradient direction by the Jacobian of the st coords
// (which is the inverse transform for this fragment) and take the length of the result.
fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));");
// the length of the gradient may be 0, so we need to check for this
// this also compensates for the Adreno, which likes to drop tiles on division by 0
fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fragBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fragBuilder->codeAppend("} else {");
fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
fragBuilder->codeAppend("}");
fragBuilder->codeAppend("vec2 Jdx = dFdx(st);");
fragBuilder->codeAppend("vec2 Jdy = dFdy(st);");
fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");
// this gives us a smooth step across approximately one fragment
fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
}
fragBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);");
fragBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage);
}
示例10: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const GrDistanceFieldPathGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldPathGeoProc>();
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(dfTexEffect);
GrGLSLVertToFrag v(kVec2f_GrSLType);
varyingHandler->addVarying("TextureCoords", &v, kHigh_GrSLPrecision);
// setup pass through color
if (!dfTexEffect.colorIgnored()) {
varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor);
}
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), dfTexEffect.inTextureCoords()->fName);
// Setup position
this->setupPosition(vertBuilder,
uniformHandler,
gpArgs,
dfTexEffect.inPosition()->fName,
dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
dfTexEffect.inPosition()->fName,
args.fFPCoordTransformHandler);
const char* textureSizeUniName = nullptr;
fTextureSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"TextureSize", &textureSizeUniName);
// Use highp to work around aliasing issues
fragBuilder->appendPrecisionModifier(kHigh_GrSLPrecision);
fragBuilder->codeAppendf("vec2 uv = %s;", v.fsIn());
fragBuilder->codeAppend("float texColor = ");
fragBuilder->appendTextureLookup(args.fTexSamplers[0],
"uv",
kVec2f_GrSLType);
fragBuilder->codeAppend(".r;");
fragBuilder->codeAppend("float distance = "
SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");");
fragBuilder->appendPrecisionModifier(kHigh_GrSLPrecision);
fragBuilder->codeAppendf("vec2 st = uv*%s;", textureSizeUniName);
fragBuilder->codeAppend("float afwidth;");
bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) ==
kUniformScale_DistanceFieldEffectMask;
bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag);
bool isGammaCorrect =
SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag);
if (isUniformScale) {
// For uniform scale, we adjust for the effect of the transformation on the distance
// by using the length of the gradient of the t coordinate in the y direction.
// We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space.
// this gives us a smooth step across approximately one fragment
#ifdef SK_VULKAN
fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(st.x));");
#else
// We use the y gradient because there is a bug in the Mali 400 in the x direction.
fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(st.y));");
#endif
} else if (isSimilarity) {
// For similarity transform, we adjust the effect of the transformation on the distance
// by using the length of the gradient of the texture coordinates. We use st coordinates
// to ensure we're mapping 1:1 from texel space to pixel space.
// this gives us a smooth step across approximately one fragment
#ifdef SK_VULKAN
fragBuilder->codeAppend("float st_grad_len = length(dFdx(st));");
#else
// We use the y gradient because there is a bug in the Mali 400 in the x direction.
fragBuilder->codeAppend("float st_grad_len = length(dFdy(st));");
#endif
fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*st_grad_len);");
} else {
// For general transforms, to determine the amount of correction we multiply a unit
// vector pointing along the SDF gradient direction by the Jacobian of the st coords
// (which is the inverse transform for this fragment) and take the length of the result.
fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));");
// the length of the gradient may be 0, so we need to check for this
// this also compensates for the Adreno, which likes to drop tiles on division by 0
fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fragBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fragBuilder->codeAppend("} else {");
//.........这里部分代码省略.........
示例11: onEmitCode
void GrGLCubicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
const GrCubicEffect& gp = args.fGP.cast<GrCubicEffect>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(gp);
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!gp.colorIgnored()) {
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(vertBuilder,
uniformHandler,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
// Setup KLM
const char* devkLMMatrixName;
fDevKLMUniform = uniformHandler->addUniform(kVertex_GrShaderFlag, kMat33f_GrSLType,
kHigh_GrSLPrecision, "KLM", &devkLMMatrixName);
GrGLSLVertToFrag v(kVec3f_GrSLType);
varyingHandler->addVarying("CubicCoeffs", &v, kHigh_GrSLPrecision);
vertBuilder->codeAppendf("%s = %s * vec3(%s, 1);",
v.vsOut(), devkLMMatrixName, gpArgs->fPositionVar.c_str());
GrGLSLVertToFrag gradCoeffs(kVec4f_GrSLType);
if (kFillAA_GrProcessorEdgeType == fEdgeType || kHairlineAA_GrProcessorEdgeType == fEdgeType) {
varyingHandler->addVarying("GradCoeffs", &gradCoeffs, kHigh_GrSLPrecision);
vertBuilder->codeAppendf("highp float k = %s[0], l = %s[1], m = %s[2];",
v.vsOut(), v.vsOut(), v.vsOut());
vertBuilder->codeAppendf("highp vec2 gk = vec2(%s[0][0], %s[1][0]), "
"gl = vec2(%s[0][1], %s[1][1]), "
"gm = vec2(%s[0][2], %s[1][2]);",
devkLMMatrixName, devkLMMatrixName, devkLMMatrixName,
devkLMMatrixName, devkLMMatrixName, devkLMMatrixName);
vertBuilder->codeAppendf("%s = vec4(3 * k * gk, -m * gl - l * gm);",
gradCoeffs.vsOut());
}
// emit transforms with position
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
gp.inPosition()->fName,
args.fFPCoordTransformHandler);
GrShaderVar edgeAlpha("edgeAlpha", kFloat_GrSLType, 0, kHigh_GrSLPrecision);
GrShaderVar gF("gF", kVec2f_GrSLType, 0, kHigh_GrSLPrecision);
GrShaderVar func("func", kFloat_GrSLType, 0, kHigh_GrSLPrecision);
fragBuilder->declAppend(edgeAlpha);
fragBuilder->declAppend(gF);
fragBuilder->declAppend(func);
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
fragBuilder->codeAppendf("%s = %s.x * %s.xy + %s.zw;",
gF.c_str(), v.fsIn(), gradCoeffs.fsIn(), gradCoeffs.fsIn());
fragBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(), v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("%s = abs(%s);", func.c_str(), func.c_str());
fragBuilder->codeAppendf("%s = %s * inversesqrt(dot(%s, %s));",
edgeAlpha.c_str(), func.c_str(), gF.c_str(), gF.c_str());
fragBuilder->codeAppendf("%s = max(1.0 - %s, 0.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
// Add line below for smooth cubic ramp
// fragBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(),
// edgeAlpha.c_str());
break;
}
case kFillAA_GrProcessorEdgeType: {
fragBuilder->codeAppendf("%s = %s.x * %s.xy + %s.zw;",
gF.c_str(), v.fsIn(), gradCoeffs.fsIn(), gradCoeffs.fsIn());
fragBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(),
v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("%s = %s * inversesqrt(dot(%s, %s));",
edgeAlpha.c_str(), func.c_str(), gF.c_str(), gF.c_str());
fragBuilder->codeAppendf("%s = clamp(0.5 - %s, 0.0, 1.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
// Add line below for smooth cubic ramp
// fragBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(),
// edgeAlpha.c_str());
break;
}
case kFillBW_GrProcessorEdgeType: {
fragBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
//.........这里部分代码省略.........
示例12: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const GrDistanceFieldA8TextGeoProc& dfTexEffect =
args.fGP.cast<GrDistanceFieldA8TextGeoProc>();
GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(dfTexEffect);
#ifdef SK_GAMMA_APPLY_TO_A8
// adjust based on gamma
const char* distanceAdjustUniName = nullptr;
// width, height, 1/(3*width)
fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"DistanceAdjust", &distanceAdjustUniName);
#endif
// Setup pass through color
if (!dfTexEffect.colorIgnored()) {
varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor);
}
// Setup position
this->setupPosition(vertBuilder,
uniformHandler,
gpArgs,
dfTexEffect.inPosition()->fName,
dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
gpArgs->fPositionVar,
dfTexEffect.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
// add varyings
GrGLSLVertToFrag recipScale(kFloat_GrSLType);
GrGLSLVertToFrag uv(kVec2f_GrSLType);
bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) ==
kUniformScale_DistanceFieldEffectMask;
bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag);
varyingHandler->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
vertBuilder->codeAppendf("%s = %s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName);
// compute numbers to be hardcoded to convert texture coordinates from float to int
SkASSERT(dfTexEffect.numTextures() == 1);
GrTexture* atlas = dfTexEffect.textureAccess(0).getTexture();
SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height()));
GrGLSLVertToFrag st(kVec2f_GrSLType);
varyingHandler->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
vertBuilder->codeAppendf("%s = vec2(%d, %d) * %s;", st.vsOut(),
atlas->width(), atlas->height(),
dfTexEffect.inTextureCoords()->fName);
// Use highp to work around aliasing issues
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(args.fGLSLCaps,
kHigh_GrSLPrecision));
fragBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
fragBuilder->codeAppend("\tfloat texColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[0],
"uv",
kVec2f_GrSLType);
fragBuilder->codeAppend(".r;\n");
fragBuilder->codeAppend("\tfloat distance = "
SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");");
#ifdef SK_GAMMA_APPLY_TO_A8
// adjust width based on gamma
fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
#endif
fragBuilder->codeAppend("float afwidth;");
if (isUniformScale) {
// For uniform scale, we adjust for the effect of the transformation on the distance
// by using the length of the gradient of the t coordinate in the y direction.
// We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space.
// We use the y gradient because there is a bug in the Mali 400 in the x direction.
// this gives us a smooth step across approximately one fragment
fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));",
st.fsIn());
} else if (isSimilarity) {
// For similarity transform, we adjust the effect of the transformation on the distance
// by using the length of the gradient of the texture coordinates. We use st coordinates
// to ensure we're mapping 1:1 from texel space to pixel space.
// We use the y gradient because there is a bug in the Mali 400 in the x direction.
// this gives us a smooth step across approximately one fragment
fragBuilder->codeAppendf("float st_grad_len = length(dFdy(%s));", st.fsIn());
//.........这里部分代码省略.........
示例13: onEmitCode
void GLSLPathProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
using InstanceAttribs = GrCCPRPathProcessor::InstanceAttribs;
const GrCCPRPathProcessor& proc = args.fGP.cast<GrCCPRPathProcessor>();
GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
const char* atlasAdjust;
fAtlasAdjustUniform = uniHandler->addUniform(
kVertex_GrShaderFlag,
kVec2f_GrSLType, kHigh_GrSLPrecision, "atlas_adjust", &atlasAdjust);
varyingHandler->emitAttributes(proc);
GrGLSLVertToFrag texcoord(kVec2f_GrSLType);
GrGLSLVertToFrag color(kVec4f_GrSLType);
varyingHandler->addVarying("texcoord", &texcoord, kHigh_GrSLPrecision);
varyingHandler->addFlatPassThroughAttribute(&proc.getInstanceAttrib(InstanceAttribs::kColor),
args.fOutputColor, kLow_GrSLPrecision);
// Vertex shader.
GrGLSLVertexBuilder* v = args.fVertBuilder;
// Find the intersections of (bloated) devBounds and devBounds45 in order to come up with an
// octagon that circumscribes the (bloated) path. A vertex is the intersection of two lines:
// one edge from the path's bounding box and one edge from its 45-degree bounding box.
v->codeAppendf("highp mat2 N = mat2(%s);", proc.getEdgeNormsAttrib().fName);
// N[0] is the normal for the edge we are intersecting from the regular bounding box, pointing
// out of the octagon.
v->codeAppendf("highp vec2 refpt = (min(N[0].x, N[0].y) < 0) ? %s.xy : %s.zw;",
proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName,
proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName);
v->codeAppendf("refpt += N[0] * %f;", kAABloatRadius); // bloat for AA.
// N[1] is the normal for the edge we are intersecting from the 45-degree bounding box, pointing
// out of the octagon.
v->codeAppendf("highp vec2 refpt45 = (N[1].x < 0) ? %s.xy : %s.zw;",
proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName,
proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName);
v->codeAppendf("refpt45 *= mat2(.5,.5,-.5,.5);"); // transform back to device space.
v->codeAppendf("refpt45 += N[1] * %f;", kAABloatRadius); // bloat for AA.
v->codeAppend ("highp vec2 K = vec2(dot(N[0], refpt), dot(N[1], refpt45));");
v->codeAppendf("highp vec2 octocoord = K * inverse(N);");
gpArgs->fPositionVar.set(kVec2f_GrSLType, "octocoord");
// Convert to atlas coordinates in order to do our texture lookup.
v->codeAppendf("highp vec2 atlascoord = octocoord + vec2(%s);",
proc.getInstanceAttrib(InstanceAttribs::kAtlasOffset).fName);
if (kTopLeft_GrSurfaceOrigin == proc.atlas()->origin()) {
v->codeAppendf("%s = atlascoord * %s;", texcoord.vsOut(), atlasAdjust);
} else {
SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.atlas()->origin());
v->codeAppendf("%s = vec2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);",
texcoord.vsOut(), atlasAdjust, atlasAdjust);
}
// Convert to (local) path cordinates.
v->codeAppendf("highp vec2 pathcoord = inverse(mat2(%s)) * (octocoord - %s);",
proc.getInstanceAttrib(InstanceAttribs::kViewMatrix).fName,
proc.getInstanceAttrib(InstanceAttribs::kViewTranslate).fName);
this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, "pathcoord",
args.fFPCoordTransformHandler);
// Fragment shader.
GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
f->codeAppend ("mediump float coverage_count = ");
f->appendTextureLookup(args.fTexSamplers[0], texcoord.fsIn(), kVec2f_GrSLType);
f->codeAppend (".a;");
if (SkPath::kWinding_FillType == proc.fillType()) {
f->codeAppendf("%s = vec4(min(abs(coverage_count), 1));", args.fOutputCoverage);
} else {
SkASSERT(SkPath::kEvenOdd_FillType == proc.fillType());
f->codeAppend ("mediump float t = mod(abs(coverage_count), 2);");
f->codeAppendf("%s = vec4(1 - abs(t - 1));", args.fOutputCoverage);
}
}