本文整理汇总了C++中GnuplotWindow::plot方法的典型用法代码示例。如果您正苦于以下问题:C++ GnuplotWindow::plot方法的具体用法?C++ GnuplotWindow::plot怎么用?C++ GnuplotWindow::plot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GnuplotWindow
的用法示例。
在下文中一共展示了GnuplotWindow::plot方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
/* >>> start tutorial code >>> */
int main( ){
USING_NAMESPACE_ACADO
// DEFINE A VARIABLES GRID:
// ------------------------
Grid dataGrid( 0.0, 5.0, 6 );
VariablesGrid data;
data.init( 2, dataGrid );
data( 0, 0 ) = 0.0; data( 0, 1 ) = 1.0 ;
data( 1, 0 ) = 0.2; data( 1, 1 ) = 0.8 ;
data( 2, 0 ) = 0.4; data( 2, 1 ) = 0.7 ;
data( 3, 0 ) = 0.6; data( 3, 1 ) = 0.65 ;
data( 4, 0 ) = 0.8; data( 4, 1 ) = 0.625;
data( 5, 0 ) = 1.0; data( 5, 1 ) = 0.613;
// CONSTRUCT A CURVE INTERPOLATING THE DATA:
// -----------------------------------------
Curve c1, c2;
c1.add( data, IM_CONSTANT );
c2.add( data, IM_LINEAR );
// PLOT CURVES ON GIVEN GRID:
// --------------------------
GnuplotWindow window;
window.addSubplot( c1, 0.0,5.0, "Constant data Interpolation" );
window.addSubplot( c2, 0.0,5.0, "Linear data Interpolation" );
window.plot();
return 0;
}
示例2: main
int main( )
{
USING_NAMESPACE_ACADO
// DEFINE THE VARIABLES:
// ----------------------------------------------------------
DifferentialState p ; // the trolley position
DifferentialState v ; // the trolley velocity
DifferentialState phi ; // the excitation angle
DifferentialState omega; // the angular velocity
Control a ; // the acc. of the trolley
const double g = 9.81; // the gravitational constant
const double b = 0.20; // the friction coefficient
// ----------------------------------------------------------
// DEFINE THE MODEL EQUATIONS:
// ----------------------------------------------------------
DifferentialEquation f;
f << dot( p ) == v ;
f << dot( v ) == a ;
f << dot( phi ) == omega ;
f << dot( omega ) == -g*sin(phi) - a*cos(phi) - b*omega;
// ----------------------------------------------------------
// SETTING UP THE (SIMULATED) PROCESS:
// -----------------------------------
OutputFcn identity;
DynamicSystem dynamicSystem( f,identity );
Process process( dynamicSystem,INT_RK45 );
// SETTING UP THE MPC CONTROLLER:
// ------------------------------
ExportedRTIscheme rtiScheme( 4,1, 10, 0.3 );
#ifdef USE_CVXGEN
set_defaults( );
#endif
Vector xuRef(5);
xuRef.setZero( );
VariablesGrid reference;
reference.addVector( xuRef, 0.0 );
reference.addVector( xuRef, 10.0 );
StaticReferenceTrajectory referenceTrajectory( reference );
Controller controller( rtiScheme,referenceTrajectory );
controller.set( USE_REFERENCE_PREDICTION,NO );
// SETTING UP THE SIMULATION ENVIRONMENT, RUN THE EXAMPLE...
// ----------------------------------------------------------
SimulationEnvironment sim( 0.0,10.0, process,controller );
Vector x0(4);
x0(0) = 1.0;
x0(1) = 0.0;
x0(2) = 0.0;
x0(3) = 0.0;
sim.init( x0 );
sim.run( );
// ... AND PLOT THE RESULTS
// ------------------------
VariablesGrid diffStates;
sim.getProcessDifferentialStates( diffStates );
VariablesGrid feedbackControl;
sim.getFeedbackControl( feedbackControl );
GnuplotWindow window;
window.addSubplot( diffStates(0), "p" );
window.addSubplot( diffStates(1), "v" );
window.addSubplot( diffStates(2), "phi" );
window.addSubplot( diffStates(3), "omega" );
window.addSubplot( feedbackControl(0), "a" );
window.plot( );
return 0;
}
示例3: main
int main( ){
USING_NAMESPACE_ACADO
// Define a Right-Hand-Side:
// -------------------------
DifferentialState x, y;
DifferentialEquation f;
f << dot(x) == y;
f << dot(y) == -x;
// Define an integrator:
// ---------------------
IntegratorRK45 integrator( f );
integrator.set( INTEGRATOR_PRINTLEVEL, MEDIUM );
integrator.set( PRINT_INTEGRATOR_PROFILE, YES );
// Define an initial value:
// ------------------------
double x_start[2] = { 0.0, 1.0 };
Grid timeInterval( 0.0, 2.0*M_PI, 100 );
integrator.freezeAll();
integrator.integrate( timeInterval, x_start );
// GET THE RESULTS
// ---------------
VariablesGrid differentialStates;
integrator.getX( differentialStates );
GnuplotWindow window;
window.addSubplot( differentialStates(0) );
window.addSubplot( differentialStates(1) );
window.plot();
// Vector seed(2);
//
// seed( 0 ) = 1.0;
// seed( 1 ) = 0.0;
//
// integrator.setForwardSeed( 1, seed );
// integrator.integrateSensitivities();
//
// VariablesGrid sens;
// integrator.getForwardSensitivities( sens, 1 );
//
// GnuplotWindow window2;
// window2.addSubplot( sens(0) );
// window2.addSubplot( sens(1) );
// window2.plot();
return 0;
}
示例4: main
int main( ){
// Define a Right-Hand-Side:
// -------------------------
DifferentialState x("", 4, 1), P("", 4, 4);
Control u("", 2, 1);
IntermediateState rhs = cstrModel( x, u );
DMatrix Q = zeros<double>(4,4);
Q(0,0) = 0.2;
Q(1,1) = 1.0;
Q(2,2) = 0.5;
Q(3,3) = 0.2;
DMatrix R = zeros<double>(2,2);
R(0,0) = 0.5;
R(1,1) = 5e-7;
DifferentialEquation f;
f << dot(x) == rhs;
f << dot(P) == getRiccatiODE( rhs, x, u, P, Q, R );
// Define an integrator:
// ---------------------
IntegratorRK45 integrator( f );
integrator.set( INTEGRATOR_PRINTLEVEL, MEDIUM );
integrator.set( PRINT_INTEGRATOR_PROFILE, YES );
// Define an initial value:
// ------------------------
//double x_ss[4] = { 2.14, 1.09, 114.2, 112.9 };
double x_start[20] = { 1.0, 0.5, 100.0, 100.0, 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 };
double u_start[2] = { 14.19, -1113.5 };
// double u_start[2] = { 10.00, -7000.0 };
Grid timeInterval( 0.0, 5000.0, 100 );
integrator.freezeAll();
integrator.integrate( timeInterval, x_start, 0 ,0, u_start );
// GET THE RESULTS
// ---------------
VariablesGrid differentialStates;
integrator.getX( differentialStates );
DVector PP = differentialStates.getLastVector();
DMatrix PPP(4,4);
for( int i=0; i<4; ++i )
for( int j=0; j<4; ++j )
PPP(i,j) = PP(4+i*4+j);
PPP.print( "P1.txt","",PS_PLAIN );
// PPP.printToFile( "P2.txt","",PS_PLAIN );
GnuplotWindow window;
window.addSubplot( differentialStates(0), "cA [mol/l]" );
window.addSubplot( differentialStates(1), "cB [mol/l]" );
window.addSubplot( differentialStates(2), "theta [C]" );
window.addSubplot( differentialStates(3), "thetaK [C]" );
window.addSubplot( differentialStates(4 ), "P11" );
window.addSubplot( differentialStates(9 ), "P22" );
window.addSubplot( differentialStates(14), "P33" );
window.addSubplot( differentialStates(19), "P44" );
window.plot();
return 0;
}
示例5: main
/* >>> start tutorial code >>> */
int main( ){
USING_NAMESPACE_ACADO
// DEFINE VALRIABLES:
// ---------------------------
DifferentialStateVector x(3); // the position of the pendulum (x,y,alpha)
DifferentialStateVector v(3); // the associated velocities
AlgebraicStateVector a(3); // the associated accelerations
AlgebraicStateVector lambda(2); // the constraint forces
const double L = 1.00; // the length of the pendulum
const double m = 1.00; // the mass of the pendulum
const double g = 9.81; // the gravitational constant
const double J = m*L*L; // the inertial of the pendulum
IntermediateStateVector R(3);
IntermediateStateVector G(2);
R.setComponent( 0, m*a(0) ); // ----------------------------------------
R.setComponent( 1, m*a(1) + m*g ); // the definition of the force residuum:
R.setComponent( 2, J*a(2) ); // R := m*a - F
G.setComponent( 0, x(0)-L*sin(x(2)) ); // definition of the constraint manifold G
G.setComponent( 1, x(1)+L*cos(x(2)) ); // ---------------------------------------
// AUTOMATIC GENERATION OF AN INDEX 1 DAE SYSTEM BASES ON THE
// NEWTON EULER FORMALISM:
// -----------------------------------------------------------
DifferentialEquation f;
NewtonEulerFormalism( f, R, G, x, v, a, lambda );
// Define an integrator:
// ---------------------
IntegratorBDF integrator( f );
// Define an initial value:
// ------------------------
double x_start[6];
double z_start[5];
x_start[0] = 1.9866932270683099e-01;
x_start[1] = -9.8006654611577315e-01;
x_start[2] = 2.0000003107582773e-01;
x_start[3] = -1.4519963562050693e-04;
x_start[4] = 4.7104175041346282e-04;
x_start[5] = 4.4177521668741377e-04;
z_start[0] = -9.5504866367984165e-01;
z_start[1] = -1.9359778029074531e-01;
z_start[2] = -9.7447321693831934e-01;
z_start[3] = -9.5504866367984165e-01;
z_start[4] = 9.6164022197092560e+00;
double t_start = 0.0;
double t_end = 10.0;
// START THE INTEGRATION
// ----------------------
integrator.set( INTEGRATOR_PRINTLEVEL, MEDIUM );
// integrator.set( INTEGRATOR_TOLERANCE, 1e-12 );
integrator.freezeAll();
integrator.integrate( x_start, z_start, t_start, t_end );
VariablesGrid xres,zres;
integrator.getTrajectory(&xres,&zres,NULL,NULL,NULL,NULL);
GnuplotWindow window;
window.addSubplot( xres(0), "The x-position of the mass m" );
window.addSubplot( xres(1), "The y-position of the mass m" );
window.addSubplot( xres(2), "The excitation angle of the pendulum" );
window.addSubplot( xres(3), "The velocity in x-direction" );
window.addSubplot( xres(4), "The velocity in y-direction" );
window.addSubplot( xres(5), "The angular velocity" );
// window.addSubplot( zres(0), "The acceleration in x-direction" );
// window.addSubplot( zres(1), "The acceleration in y-direction" );
// window.addSubplot( zres(2), "The angular acceleration" );
window.addSubplot( zres(3), "The constraint force in x-direction" );
window.addSubplot( zres(4), "The constraint force in y-direction" );
window.plot();
return 0;
}
示例6: main
//.........这里部分代码省略.........
OCP ocp ( t_start, t_end, 14 );
ocp.minimizeLSQ( Q, h, r );
ocp.subjectTo ( f );
ocp.subjectTo( -1.0 <= u <= 2.0 );
//ocp.subjectTo( w == 0.0 );
// SETTING UP THE (SIMULATED) PROCESS:
// -----------------------------------
OutputFcn identity;
DynamicSystem dynamicSystem( f2,identity );
Process process( dynamicSystem,INT_RK45 );
VariablesGrid disturbance = fopen( "my_disturbance.txt", "r" );
// GnuplotWindow window2;
// window2.addSubplot( disturbance, "my disturbance" );
// window2.plot();
process.setProcessDisturbance( disturbance );
// SETUP OF THE ALGORITHM AND THE TUNING OPTIONS:
// ----------------------------------------------
double samplingTime = 0.5;
RealTimeAlgorithm algorithm( ocp,samplingTime );
// // algorithm.set( HESSIAN_APPROXIMATION, BLOCK_BFGS_UPDATE );
algorithm.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON );
//
// // algorithm.set( ABSOLUTE_TOLERANCE , 1e-7 );
// // algorithm.set( INTEGRATOR_TOLERANCE, 1e-9 );
//
// algorithm.set( KKT_TOLERANCE, 1e-4 );
algorithm.set( MAX_NUM_ITERATIONS,1 );
algorithm.set( USE_REALTIME_SHIFTS, YES );
// algorithm.set( USE_REALTIME_ITERATIONS,NO );
// algorithm.set( TERMINATE_AT_CONVERGENCE,YES );
// algorithm.set( PRINTLEVEL,HIGH );
Vector x0(1);
x0(0) = 1.0;
// // algorithm.solve( x0 );
//
// GnuplotWindow window1;
// window1.addSubplot( x, "DIFFERENTIAL STATE: x" );
// window1.addSubplot( u, "CONTROL: u" );
// window1.plot();
//
// return 0;
// SETTING UP THE NMPC CONTROLLER:
// -------------------------------
VariablesGrid myReference = fopen( "my_reference.txt", "r" );
PeriodicReferenceTrajectory reference( myReference );
// GnuplotWindow window3;
// window3.addSubplot( myReference(1), "my reference" );
// window3.plot();
Controller controller( algorithm,reference );
// SETTING UP THE SIMULATION ENVIRONMENT, RUN THE EXAMPLE...
// ----------------------------------------------------------
double simulationStart = 0.0;
double simulationEnd = 15.0;
SimulationEnvironment sim( simulationStart, simulationEnd, process, controller );
sim.init( x0 );
sim.run( );
// ...AND PLOT THE RESULTS
// ----------------------------------------------------------
VariablesGrid sampledProcessOutput;
sim.getSampledProcessOutput( sampledProcessOutput );
VariablesGrid feedbackControl;
sim.getFeedbackControl( feedbackControl );
GnuplotWindow window;
window.addSubplot( sampledProcessOutput(0), "DIFFERENTIAL STATE: x" );
window.addSubplot( feedbackControl(0), "CONTROL: u" );
window.plot();
return 0;
}
示例7: main
//.........这里部分代码省略.........
VariablesGrid disturbance; disturbance.read( "my_wind_disturbance_controlsfree.txt" );
if (process.setProcessDisturbance( disturbance ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
// SETUP OF THE ALGORITHM AND THE TUNING OPTIONS:
// ----------------------------------------------
double samplingTime = 1.0;
RealTimeAlgorithm algorithm( ocp, samplingTime );
if (algorithm.initializeDifferentialStates("p_s_ref.txt" ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
if (algorithm.initializeControls ("p_c_ref.txt" ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
algorithm.set( MAX_NUM_ITERATIONS, 2 );
algorithm.set( KKT_TOLERANCE , 1e-4 );
algorithm.set( HESSIAN_APPROXIMATION,GAUSS_NEWTON);
algorithm.set( INTEGRATOR_TOLERANCE, 1e-6 );
algorithm.set( GLOBALIZATION_STRATEGY,GS_FULLSTEP );
// algorithm.set( USE_IMMEDIATE_FEEDBACK, YES );
algorithm.set( USE_REALTIME_SHIFTS, YES );
algorithm.set(LEVENBERG_MARQUARDT, 1e-5);
DVector x0(10);
x0(0) = 1.8264164528775887e+03;
x0(1) = -5.1770453309520573e-03;
x0(2) = 1.2706440287266794e+00;
x0(3) = 2.1977888424944396e+00;
x0(4) = 3.1840786108641383e-03;
x0(5) = -3.8281200674676448e-02;
x0(6) = 0.0000000000000000e+00;
x0(7) = -1.0372313936413566e-02;
x0(8) = 1.4999999999999616e+00;
x0(9) = 0.0000000000000000e+00;
// SETTING UP THE NMPC CONTROLLER:
// -------------------------------
Controller controller( algorithm, reference );
// SETTING UP THE SIMULATION ENVIRONMENT, RUN THE EXAMPLE...
// ----------------------------------------------------------
double simulationStart = 0.0;
double simulationEnd = 10.0;
SimulationEnvironment sim( simulationStart, simulationEnd, process, controller );
if (sim.init( x0 ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
if (sim.run( ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
// ...AND PLOT THE RESULTS
// ----------------------------------------------------------
VariablesGrid diffStates;
sim.getProcessDifferentialStates( diffStates );
diffStates.print( "diffStates.txt" );
diffStates.print( "diffStates.m","DIFFSTATES",PS_MATLAB );
VariablesGrid interStates;
sim.getProcessIntermediateStates( interStates );
interStates.print( "interStates.txt" );
interStates.print( "interStates.m","INTERSTATES",PS_MATLAB );
VariablesGrid sampledProcessOutput;
sim.getSampledProcessOutput( sampledProcessOutput );
sampledProcessOutput.print( "sampledOut.txt" );
sampledProcessOutput.print( "sampledOut.m","OUT",PS_MATLAB );
VariablesGrid feedbackControl;
sim.getFeedbackControl( feedbackControl );
feedbackControl.print( "controls.txt" );
feedbackControl.print( "controls.m","CONTROL",PS_MATLAB );
GnuplotWindow window;
window.addSubplot( sampledProcessOutput(0), "DIFFERENTIAL STATE: r" );
window.addSubplot( sampledProcessOutput(1), "DIFFERENTIAL STATE: phi" );
window.addSubplot( sampledProcessOutput(2), "DIFFERENTIAL STATE: theta" );
window.addSubplot( sampledProcessOutput(3), "DIFFERENTIAL STATE: dr" );
window.addSubplot( sampledProcessOutput(4), "DIFFERENTIAL STATE: dphi" );
window.addSubplot( sampledProcessOutput(5), "DIFFERENTIAL STATE: dtheta" );
window.addSubplot( sampledProcessOutput(7), "DIFFERENTIAL STATE: Psi" );
window.addSubplot( sampledProcessOutput(8), "DIFFERENTIAL STATE: CL" );
window.addSubplot( sampledProcessOutput(9), "DIFFERENTIAL STATE: W" );
window.addSubplot( feedbackControl(0), "CONTROL 1 DDR0" );
window.addSubplot( feedbackControl(1), "CONTROL 1 DPSI" );
window.addSubplot( feedbackControl(2), "CONTROL 1 DCL" );
window.plot( );
GnuplotWindow window2;
window2.addSubplot( interStates(1) );
window2.plot();
return 0;
}
示例8: main
int main( ){
USING_NAMESPACE_ACADO
// DEFINE A RIGHT-HAND-SIDE:
// -------------------------
DifferentialState x;
AlgebraicState z;
Parameter p,q;
IntermediateState is(4);
is(0) = x;
is(1) = z;
is(2) = p;
is(3) = q;
CFunction simpledaeModel( 2, ffcn_model );
// Define a Right-Hand-Side:
// -------------------------
DifferentialEquation f;
f << simpledaeModel(is);
// DEFINE AN INTEGRATOR:
// ---------------------
IntegratorBDF integrator(f);
// DEFINE INITIAL VALUES:
// ----------------------
double x0 = 1.0;
double z0 = 1.000000;
double pp[2] = { 1.0, 1.0 };
Grid interval( 0.0, 1.0, 100 );
// START THE INTEGRATION:
// ----------------------
integrator.integrate( interval, &x0, &z0, pp );
VariablesGrid differentialStates;
VariablesGrid algebraicStates ;
VariablesGrid intermediateStates;
integrator.getX ( differentialStates );
integrator.getXA( algebraicStates );
integrator.getI ( intermediateStates );
GnuplotWindow window;
window.addSubplot( differentialStates(0) );
window.addSubplot( algebraicStates (0) );
window.plot();
return 0;
}
示例9: main
int main( ){
USING_NAMESPACE_ACADO
// INTRODUCE THE VARIABLES:
// -------------------------
DifferentialState x;
DifferentialState l;
AlgebraicState z;
Control u;
DifferentialEquation f;
// Disturbance R;
// DEFINE A DIFFERENTIAL EQUATION:
// -------------------------------
f << dot(x) == -x + 0.5*x*x + u + 0.5*z ;
f << dot(l) == x*x + 3.0*u*u ;
f << 0 == z + exp(z) - 1.0 + x ;
// DEFINE AN OPTIMAL CONTROL PROBLEM:
// ----------------------------------
OCP ocp( 0.0, 5.0, 10 );
ocp.minimizeMayerTerm( l );
ocp.subjectTo( f );
// ocp.subjectTo( R == 0.0 );
// SETTING UP THE (SIMULATED) PROCESS:
// -----------------------------------
OutputFcn identity;
DynamicSystem dynamicSystem( f,identity );
Process process( dynamicSystem,INT_BDF );
//VariablesGrid disturbance = readFromFile( "dae_simulation_disturbance.txt" );
//process.setProcessDisturbance( disturbance );
// SETTING UP THE MPC CONTROLLER:
// ------------------------------
RealTimeAlgorithm alg( ocp,0.5 );
StaticReferenceTrajectory zeroReference;
Controller controller( alg,zeroReference );
// SETTING UP THE SIMULATION ENVIRONMENT, RUN THE EXAMPLE...
// ----------------------------------------------------------
SimulationEnvironment sim( 0.0,15.0,process,controller );
Vector x0(2);
x0(0) = 1;
x0(1) = 0;
sim.init( x0 );
sim.run( );
// ...AND PLOT THE RESULTS
// ----------------------------------------------------------
VariablesGrid diffStates;
sim.getProcessDifferentialStates( diffStates );
diffStates.printToFile( "diffStates.txt" );
diffStates.printToFile( "diffStates.m","DIFFSTATES",PS_MATLAB );
VariablesGrid sampledProcessOutput;
sim.getSampledProcessOutput( sampledProcessOutput );
sampledProcessOutput.printToFile( "sampledOut.txt" );
sampledProcessOutput.printToFile( "sampledOut.m","OUT",PS_MATLAB );
VariablesGrid feedbackControl;
sim.getFeedbackControl( feedbackControl );
feedbackControl.printToFile( "controls.txt" );
feedbackControl.printToFile( "controls.m","CONTROL",PS_MATLAB );
VariablesGrid algStates;
sim.getProcessAlgebraicStates( algStates );
algStates.printToFile( "algStates.txt" );
algStates.printToFile( "algStates.m","ALGSTATES",PS_MATLAB );
GnuplotWindow window;
window.addSubplot( diffStates(0), "DIFFERENTIAL STATE: x" );
window.addSubplot( diffStates(1), "DIFFERENTIAL STATE: l" );
window.addSubplot( algStates(0), "ALGEBRAIC STATE: z" );
window.addSubplot( feedbackControl(0), "CONTRUL: u" );
window.plot( );
return 0;
}
示例10: main
//.........这里部分代码省略.........
// DEFINE A DIFFERENTIAL EQUATION:
// -------------------------------
DifferentialEquation f;
f << dot(xB) == vB;
f << dot(xW) == vW;
f << dot(vB) == ( -kS*xB + kS*xW + F ) / mB;
f << dot(vW) == ( kS*xB - (kT+kS)*xW + kT*R - F ) / mW;
// DEFINE LEAST SQUARE FUNCTION:
// -----------------------------
Function h;
h << xB;
h << xW;
h << vB;
h << vW;
Matrix Q(4,4);
Q.setIdentity();
Q(0,0) = 10.0;
Q(1,1) = 10.0;
Vector r(4);
r.setAll( 0.0 );
// DEFINE AN OPTIMAL CONTROL PROBLEM:
// ----------------------------------
const double t_start = 0.0;
const double t_end = 1.0;
OCP ocp( t_start, t_end, 20 );
ocp.minimizeLSQ( Q, h, r );
ocp.subjectTo( f );
ocp.subjectTo( -500.0 <= F <= 500.0 );
ocp.subjectTo( R == 0.0 );
// SETTING UP THE (SIMULATED) PROCESS:
// -----------------------------------
OutputFcn identity;
DynamicSystem dynamicSystem( f,identity );
Process process( dynamicSystem,INT_RK45 );
VariablesGrid disturbance = readFromFile( "road.txt" );
process.setProcessDisturbance( disturbance );
// SETTING UP THE MPC CONTROLLER:
// ------------------------------
RealTimeAlgorithm alg( ocp,0.05 );
alg.set( MAX_NUM_ITERATIONS, 2 );
StaticReferenceTrajectory zeroReference;
Controller controller( alg,zeroReference );
// SETTING UP THE SIMULATION ENVIRONMENT, RUN THE EXAMPLE...
// ----------------------------------------------------------
SimulationEnvironment sim( 0.0,3.0,process,controller );
Vector x0(4);
x0(0) = 0.01;
x0(1) = 0.0;
x0(2) = 0.0;
x0(3) = 0.0;
sim.init( x0 );
sim.run( );
// ...AND PLOT THE RESULTS
// ----------------------------------------------------------
VariablesGrid sampledProcessOutput;
sim.getSampledProcessOutput( sampledProcessOutput );
VariablesGrid feedbackControl;
sim.getFeedbackControl( feedbackControl );
GnuplotWindow window;
window.addSubplot( sampledProcessOutput(0), "Body Position [m]" );
window.addSubplot( sampledProcessOutput(1), "Wheel Position [m]" );
window.addSubplot( sampledProcessOutput(2), "Body Velocity [m/s]" );
window.addSubplot( sampledProcessOutput(3), "Wheel Velocity [m/s]" );
window.addSubplot( feedbackControl(1), "Damping Force [N]" );
window.addSubplot( feedbackControl(0), "Road Excitation [m]" );
window.plot( );
return 0;
}
示例11: main
//.........这里部分代码省略.........
9.3885430857029321E+04, // P_{top} = 939 h Pa
2.5000000000000000E+02, // \Delta P_{strip}= 2.5 h Pa and \Delta P_{rect} = 1.9 h Pa
1.4026000000000000E+01, // F_{vol} = 14.0 l h^{-1}
3.2000000000000001E-01, // X_F = 0.32
7.1054000000000002E+01, // T_F = 71 oC
4.7163089489100003E+01, // T_C = 47.2 oC
4.1833910753991770E+00, // (not in use?)
2.4899344810136301E+00, // (not in use?)
1.8760537088149468E+02 // (not in use?)
};
DVector x0(NXD, xd);
DVector p0(NP, pd);
// DEFINE AN OPTIMAL CONTROL PROBLEM:
// ----------------------------------
OCP ocp( t_start, t_end, intervals );
// LSQ Term on temperature deviations and controls
Function h;
// for( i = 0; i < NXD; i++ )
// h << 0.001*x(i);
h << 0.1 * ( z(94) - 88.0 ); // Temperature tray 14
h << 0.1 * ( z(108) - 70.0 ); // Temperature tray 28
h << 0.01 * ( u(0) - ud[0] ); // L_vol
h << 0.01 * ( u(1) - ud[1] ); // Q
ocp.minimizeLSQ( h );
// W.r.t. differential equation
ocp.subjectTo( f );
// Fix states
ocp.subjectTo( AT_START, x == x0 );
// Fix parameters
ocp.subjectTo( p == p0 );
// Path constraint on controls
ocp.subjectTo( ud[0] - 2.0 <= u(0) <= ud[0] + 2.0 );
ocp.subjectTo( ud[1] - 2.0 <= u(1) <= ud[1] + 2.0 );
// DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
// ---------------------------------------------------
OptimizationAlgorithm algorithm(ocp);
algorithm.initializeAlgebraicStates("hydroscal_algebraic_states.txt");
algorithm.set( INTEGRATOR_TYPE, INT_BDF );
algorithm.set( MAX_NUM_ITERATIONS, 5 );
algorithm.set( KKT_TOLERANCE, 1e-3 );
algorithm.set( INTEGRATOR_TOLERANCE, 1e-4 );
algorithm.set( ABSOLUTE_TOLERANCE , 1e-6 );
algorithm.set( PRINT_SCP_METHOD_PROFILE, YES );
algorithm.set( LINEAR_ALGEBRA_SOLVER, SPARSE_LU );
algorithm.set( DISCRETIZATION_TYPE, MULTIPLE_SHOOTING );
//algorithm.set( LEVENBERG_MARQUARDT, 1e-3 );
algorithm.set( DYNAMIC_SENSITIVITY, FORWARD_SENSITIVITY_LIFTED );
//algorithm.set( DYNAMIC_SENSITIVITY, FORWARD_SENSITIVITY );
//algorithm.set( CONSTRAINT_SENSITIVITY, FORWARD_SENSITIVITY );
//algorithm.set( ALGEBRAIC_RELAXATION,ART_EXPONENTIAL ); //results in an extra step but steps are quicker
algorithm.solve();
double clock2 = clock();
printf("total computation time = %.16e \n", (clock2-clock1)/CLOCKS_PER_SEC );
// PLOT RESULTS:
// ---------------------------------------------------
VariablesGrid out_states;
algorithm.getDifferentialStates( out_states );
out_states.print( "OUT_states.m","STATES",PS_MATLAB );
VariablesGrid out_controls;
algorithm.getControls( out_controls );
out_controls.print( "OUT_controls.m","CONTROLS",PS_MATLAB );
VariablesGrid out_algstates;
algorithm.getAlgebraicStates( out_algstates );
out_algstates.print( "OUT_algstates.m","ALGSTATES",PS_MATLAB );
GnuplotWindow window;
window.addSubplot( out_algstates(94), "Temperature tray 14" );
window.addSubplot( out_algstates(108), "Temperature tray 28" );
window.addSubplot( out_controls(0), "L_vol" );
window.addSubplot( out_controls(1), "Q" );
window.plot( );
return 0;
}
示例12: main
//.........这里部分代码省略.........
// SET AN INITIAL GUESS FOR THE FIRST MPC LOOP (NEXT LOOPS WILL USE AS INITIAL GUESS THE SOLUTION FOUND AT THE PREVIOUS MPC LOOP)
Grid timeGrid(0.0,T,nb_nodes+1);
VariablesGrid x_init(16, timeGrid);
// init with static
for (int i = 0 ; i<nb_nodes+1 ; i++ ) {
x_init(i,0) = 0.;
x_init(i,1) = 0.;
x_init(i,2) = 0.;
x_init(i,3) = 0.;
x_init(i,4) = 0.;
x_init(i,5) = 0.;
x_init(i,6) = 0.;
x_init(i,7) = 0.;
x_init(i,8) = 0.;
x_init(i,9) = 0.;
x_init(i,10) = 0.;
x_init(i,11) = 0.;
x_init(i,12) = 58.; //58. is the propeller rotation speed so the total thrust balance the weight of the quad
x_init(i,13) = 58.;
x_init(i,14) = 58.;
x_init(i,15) = 58.;
}
alg.initializeDifferentialStates(x_init);
// SET OPTION AND PLOTS WINDOW
// ---------------------------
// Linesearch is an algorithm which will try several points along the descent direction to choose a better step length.
// It looks like activating this option produice more stable trajectories.198
alg.set( GLOBALIZATION_STRATEGY, GS_LINESEARCH );
alg.set(INTEGRATOR_TYPE, INT_RK45);
// You can uncomment those lines to see how the predicted trajectory involve along time
// (but be carefull because you will have 1 ploting window per MPC loop)
// GnuplotWindow window1(PLOT_AT_EACH_ITERATION);
// window1.addSubplot( z,"DifferentialState z" );
// window1.addSubplot( x,"DifferentialState x" );
// window1.addSubplot( theta,"DifferentialState theta" );
// window1.addSubplot( 16./((x+3)*(x+3)+4*(z-5)*(z-5)),"Dist obs1" );
// window1.addSubplot( 16./((x-3)*(x-3)+4*(z-9)*(z-9)),"Dist obs2" );
// window1.addSubplot( 16./((x+2)*(x+2)+4*(z-15)*(z-15)),"Dist obs3" );
// alg<<window1;
// SETTING UP THE SIMULATION ENVIRONMENT, RUN THE EXAMPLE...
// ----------------------------------------------------------
// The first argument is the starting time, the second the end time.
SimulationEnvironment sim( 0.0,10.,process,controller );
//Setting the state of the sytem at the beginning of the simulation.
DVector x0(16);
x0.setZero();
x0(0) = 0.;
x0(12) = 58.;
x0(13) = 58.;
x0(14) = 58.;
x0(15) = 58.;
t = clock();
if (sim.init( x0 ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
if (sim.run( ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
t = clock() - t;
std::cout << "total time : " << (((float)t)/CLOCKS_PER_SEC)<<std::endl;
// ...SAVE THE RESULTS IN FILES
// ----------------------------------------------------------
std::ofstream file;
file.open("/tmp/log_state.txt",std::ios::out);
std::ofstream file2;
file2.open("/tmp/log_control.txt",std::ios::out);
VariablesGrid sampledProcessOutput;
sim.getSampledProcessOutput( sampledProcessOutput );
sampledProcessOutput.print(file);
VariablesGrid feedbackControl;
sim.getFeedbackControl( feedbackControl );
feedbackControl.print(file2);
// ...AND PLOT THE RESULTS
// ----------------------------------------------------------
GnuplotWindow window;
window.addSubplot( sampledProcessOutput(0), "x " );
window.addSubplot( sampledProcessOutput(1), "y " );
window.addSubplot( sampledProcessOutput(2), "z " );
window.addSubplot( sampledProcessOutput(6),"phi" );
window.addSubplot( sampledProcessOutput(7),"theta" );
window.addSubplot( sampledProcessOutput(8),"psi" );
window.plot( );
graphics::corbaServer::ClientCpp client = graphics::corbaServer::ClientCpp();
client.createWindow("window");
return 0;
}
示例13: main
/* >>> start tutorial code >>> */
int main( ){
USING_NAMESPACE_ACADO
// DEFINE VALRIABLES:
// ---------------------------
DifferentialStateVector q(2); // the generalized coordinates of the pendulum
DifferentialStateVector dq(2); // the associated velocities
const double L1 = 1.00; // length of the first pendulum
const double L2 = 1.00; // length of the second pendulum
const double m1 = 1.00; // mass of the first pendulum
const double m2 = 1.00; // mass of the second pendulum
const double g = 9.81; // gravitational constant
const double alpha = 0.10; // a friction constant
const double J_11 = (m1+m2)*L1*L1; // auxiliary variable (inertia comp.)
const double J_22 = m2 *L2*L2; // auxiliary variable (inertia comp.)
const double J_12 = m2 *L1*L2; // auxiliary variable (inertia comp.)
const double E1 = -(m1+m2)*g*L1; // auxiliary variable (pot energy 1)
const double E2 = - m2 *g*L2; // auxiliary variable (pot energy 2)
IntermediateState c1;
IntermediateState c2;
IntermediateState c3;
IntermediateState T;
IntermediateState V;
IntermediateStateVector Q;
// COMPUTE THE KINETIC ENERGY T AND THE POTENTIAL V:
// -------------------------------------------------
c1 = cos(q(0));
c2 = cos(q(1));
c3 = cos(q(0)+q(1));
T = 0.5*J_11*dq(0)*dq(0) + 0.5*J_22*dq(1)*dq(1) + J_12*c3*dq(0)*dq(1);
V = E1*c1 + E2*c2;
Q = (-alpha*dq);
// AUTOMATICALLY DERIVE THE EQUATIONS OF MOTION BASED ON THE LAGRANGIAN FORMALISM:
// -------------------------------------------------------------------------------
DifferentialEquation f;
LagrangianFormalism( f, T - V, Q, q, dq );
// Define an integrator:
// ---------------------
IntegratorBDF integrator( f );
// Define an initial value:
// ------------------------
double x_start[4] = { 0.0, 0.5, 0.0, 0.1 };
double t_start = 0.0;
double t_end = 3.0;
// START THE INTEGRATION
// ----------------------
integrator.set( INTEGRATOR_PRINTLEVEL, MEDIUM );
integrator.set( INTEGRATOR_TOLERANCE, 1e-12 );
integrator.freezeAll();
integrator.integrate( x_start, t_start, t_end );
VariablesGrid xres;
integrator.getTrajectory(&xres,NULL,NULL,NULL,NULL,NULL);
GnuplotWindow window;
window.addSubplot( xres(0), "The excitation angle of pendulum 1" );
window.addSubplot( xres(1), "The excitation angle of pendulum 2" );
window.addSubplot( xres(2), "The angular velocity of pendulum 1" );
window.addSubplot( xres(3), "The angular velocity of pendulum 2" );
window.plot();
return 0;
}
示例14: main
//.........这里部分代码省略.........
// DEFINE A DIFFERENTIAL EQUATION:
// -------------------------------
DifferentialEquation f;
f << dot(xB) == vB;
f << dot(xW) == vW;
f << dot(vB) == ( -kS*xB + kS*xW + F ) / mB;
f << dot(vW) == ( kS*xB - (kT+kS)*xW + kT*R - F ) / mW;
// SETTING UP THE (SIMULATED) PROCESS:
// -----------------------------------
OutputFcn identity;
DynamicSystem dynamicSystem( f,identity );
Process process( dynamicSystem,INT_RK45 );
VariablesGrid disturbance = readFromFile( "road.txt" );
if (process.setProcessDisturbance( disturbance ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
// DEFINE AN OPTIMAL CONTROL PROBLEM:
// ----------------------------------
Function h;
h << xB;
h << xW;
h << vB;
h << vW;
h << F;
Matrix Q = zeros(5,5); // LSQ coefficient matrix
Q(0,0) = 10.0;
Q(1,1) = 10.0;
Q(2,2) = 1.0;
Q(3,3) = 1.0;
Q(4,4) = 1.0e-8;
Vector r(5); // Reference
r.setAll( 0.0 );
const double tStart = 0.0;
const double tEnd = 1.0;
OCP ocp( tStart, tEnd, 20 );
ocp.minimizeLSQ( Q, h, r );
ocp.subjectTo( f );
ocp.subjectTo( -200.0 <= F <= 200.0 );
ocp.subjectTo( R == 0.0 );
// SETTING UP THE MPC CONTROLLER:
// ------------------------------
RealTimeAlgorithm alg( ocp,0.05 );
alg.set( INTEGRATOR_TYPE, INT_RK78 );
alg.set( DYNAMIC_SENSITIVITY,FORWARD_SENSITIVITY );
// alg.set( MAX_NUM_ITERATIONS, 2 );
// alg.set( USE_IMMEDIATE_FEEDBACK,YES );
StaticReferenceTrajectory zeroReference;
Controller controller( alg,zeroReference );
// SETTING UP THE SIMULATION ENVIRONMENT, RUN THE EXAMPLE...
// ----------------------------------------------------------
SimulationEnvironment sim( 0.0,2.5,process,controller );
Vector x0(4);
x0.setZero();
if (sim.init( x0 ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
if (sim.run( ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
// ... AND PLOT THE RESULTS
// ------------------------
VariablesGrid diffStates;
sim.getProcessDifferentialStates( diffStates );
VariablesGrid feedbackControl;
sim.getFeedbackControl( feedbackControl );
GnuplotWindow window;
window.addSubplot( diffStates(0), "Body Position [m]" );
window.addSubplot( diffStates(1), "Wheel Position [m]" );
window.addSubplot( diffStates(2), "Body Velocity [m/s]" );
window.addSubplot( diffStates(3), "Wheel Velocity [m/s]" );
window.addSubplot( feedbackControl, "Damping Force [N]" );
window.addSubplot( disturbance, "Road Excitation [m]" );
window.plot( );
return EXIT_SUCCESS;
}