本文整理汇总了C++中GlidePolar类的典型用法代码示例。如果您正苦于以下问题:C++ GlidePolar类的具体用法?C++ GlidePolar怎么用?C++ GlidePolar使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了GlidePolar类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: fixed
void
GlidePolarTest::Init()
{
// Polar 1 from PolarStore (206 Hornet)
polar.SetCoefficients(PolarCoefficients(fixed(0.0022032), fixed(-0.08784),
fixed(1.47)), false);
polar.SetReferenceMass(fixed(318), false);
polar.SetDryMass(fixed(318), false);
polar.SetBallastRatio(fixed(100) / polar.reference_mass);
polar.SetWingArea(fixed(9.8));
// No ballast and no bugs on the wings
polar.ballast = fixed(0);
polar.bugs = fixed(1);
// MC zero
polar.mc = fixed(0);
polar.SetVMax(Units::ToSysUnit(fixed(200), Unit::KILOMETER_PER_HOUR), false);
}
示例2: LoadCalculationsPersist
/**
* Loads calculated values from the persistent memory file
* @param Calculated DERIVED_INFO the values should be loaded into
*/
void
LoadCalculationsPersist(DERIVED_INFO *Calculated,
ProtectedTaskManager &protected_task_manager,
GlideComputer &glide_computer)
{
return; // do nothing, this is broken for CommonStats
// Get the persistent memory filename
if (szCalculationsPersistFileName[0] == 0) {
if (is_altair()) {
LocalPath(szCalculationsPersistFileName, _T("persist/xcsoar-persist.log"));
LocalPath(szCalculationsPersistDirectory, _T("persist"));
} else {
LocalPath(szCalculationsPersistFileName, _T("xcsoar-persist.log"));
_tcscpy(szCalculationsPersistDirectory, GetPrimaryDataPath());
}
}
// Debug Log
LogStartUp(_T("LoadCalculationsPersist"));
unsigned sizein;
// Try to open the persistent memory file
FILE *file = _tfopen(szCalculationsPersistFileName, _T("rb"));
if (file == NULL) {
LogStartUp(_T("LoadCalculationsPersist file not found"));
return;
}
fread(&sizein, sizeof(sizein), 1, file);
if (sizein != sizeof(*Calculated)) {
fclose(file);
return;
}
// Read persistent memory into Calculated
fread(Calculated, sizeof(*Calculated), 1, file);
fread(&sizein, sizeof(sizein), 1, file);
if (sizein != sizeof(glide_computer.GetFlightStats())) {
glide_computer.ResetFlight();
fclose(file);
return;
}
// Read persistent memory into FlightStats
fread(&glide_computer.GetFlightStats(), sizeof(glide_computer.GetFlightStats()), 1, file);
/// @todo persistence for OLC data
fread(&sizein, sizeof(sizein), 1, file);
if (sizein != 4 * sizeof(double)) {
fclose(file);
return;
}
GlidePolar polar = glide_computer.SettingsComputer().glide_polar_task;
double MACCREADY = polar.get_mc();
double BUGS = polar.get_bugs();
double BALLAST = polar.get_ballast();
// Read persistent memory into MacCready, QNH, bugs, ballast and temperature
fread(&MACCREADY, sizeof(double), 1, file);
fread(&BUGS, sizeof(double), 1, file);
fread(&BALLAST, sizeof(double), 1, file);
fread(&CuSonde::maxGroundTemperature,
sizeof(CuSonde::maxGroundTemperature), 1, file);
// ReadFile(hFile,&CRUISE_EFFICIENCY,
// size,&dwBytesWritten,(OVERLAPPED*)NULL);
MACCREADY = min(10.0, max(MACCREADY, 0.0));
BUGS = min(1.0, max(BUGS, 0.0));
BALLAST = min(1.0, max(BALLAST, 0.0));
// CRUISE_EFFICIENCY = min(1.5, max(CRUISE_EFFICIENCY,0.75));
polar.set_mc(fixed(MACCREADY));
polar.set_bugs(fixed(BUGS));
polar.set_ballast(fixed(BALLAST));
protected_task_manager.set_glide_polar(polar);
LogStartUp(_T("LoadCalculationsPersist OK"));
fclose(file);
}
示例3: fixed
void
VarioBarRenderer::Draw(Canvas &canvas, const PixelRect &rc,
const MoreData &basic,
const DerivedInfo &calculated,
const GlidePolar &glide_polar,
const bool vario_bar_avg_enabled) const
{
#ifdef ENABLE_OPENGL
const ScopeAlphaBlend alpha_blend;
#endif
RasterPoint VarioBar[6] = {
{ 0, 0 }, { 9, -9 }, { 18, 0 }, { 18, 0 }, { 9, 0 }, { 0, 0 }
};
RasterPoint VarioBarAvg[4] = {
{ 0, 0 }, { 9, -9 }, { 9, 0 }, { 0, 0 }
};
RasterPoint clipping_arrow[6] = {
{ 0, 0 }, { 9, 9 }, { 18, 0 }, { 18, 6 }, { 9, 15 }, { 0, 6 }
};
RasterPoint clipping_arrow_av[4] = {
{ 0, 0 }, { 9, 9 }, { 9, 15 }, { 0, 6 }
};
RasterPoint mc_arrow[6] = {
{ 0, 0 }, { 9, -9 }, { 18, 0 }, { 18, -2 }, { 9, -11 }, { 0, -2 }
};
TCHAR Value[10];
const int y0 = (rc.bottom + rc.top) / 2;
/* NOTE: size_divisor replaces the fixed value 9 that was used throughout
* the code sink which caused fixed size rendering regardless of
* map size (except the effects of Layout::Scale()). This method
* is not usable with variable map sizes (e.g. because of the cross-section
* area). size_divisor is used to introduce a screen size dependent scaling.
* That workaround is an ugly hack and needs a rework. */
const auto size_divisor =
std::max((fixed) Layout::Scale(70 / (rc.bottom - rc.top)), fixed(0.15));
PixelScalar dy_variobar = 0;
PixelScalar dy_variobar_av = 0;
PixelScalar dy_variobar_mc = 0;
PixelScalar clipping_arrow_offset = Layout::Scale(4);
PixelScalar clipping_arrow_av_offset = Layout::Scale(4);
// PixelScalar clipping_arrow_mc_offset = Layout::Scale(4);
auto vario_gross = basic.brutto_vario;
FormatUserVerticalSpeed(vario_gross, Value, false, true);
canvas.Select(*look.font);
const PixelSize text_size = canvas.CalcTextSize(Value);
auto vario_avg = calculated.average;
// cut vario_gross at +- 5 meters/s
if (vario_gross > fixed(5))
vario_gross = fixed(5);
if (vario_gross < fixed(-5))
vario_gross = fixed(-5);
int Offset = (int)(vario_gross / size_divisor);
Offset = Layout::Scale(Offset);
if (!positive(vario_gross)) {
VarioBar[1].y = Layout::Scale(9);
dy_variobar = text_size.cy + 2;
} else {
VarioBar[1].y = -Layout::Scale(9);
clipping_arrow[1].y = -clipping_arrow[1].y;
clipping_arrow[3].y = -clipping_arrow[3].y;
clipping_arrow[4].y = -clipping_arrow[4].y;
clipping_arrow[5].y = -clipping_arrow[5].y;
clipping_arrow_offset = -clipping_arrow_offset;
dy_variobar = -1;
}
// cut vario_avg at +- 5 meters/s
if (vario_avg > fixed(5))
vario_avg = fixed(5);
if (vario_avg < fixed(-5))
vario_avg = fixed(-5);
int OffsetAvg = int(vario_avg / size_divisor);
OffsetAvg = Layout::Scale(OffsetAvg);
if (!positive(vario_avg)) {
VarioBarAvg[1].y = Layout::Scale(9);
dy_variobar_av = text_size.cy + 2;
} else {
VarioBarAvg[1].y = -Layout::Scale(9);
clipping_arrow_av[1].y = -clipping_arrow_av[1].y;
clipping_arrow_av[2].y = -clipping_arrow_av[2].y;
clipping_arrow_av[3].y = -clipping_arrow_av[3].y;
clipping_arrow_av_offset = -clipping_arrow_av_offset;
dy_variobar_av = -1;
}
//.........这里部分代码省略.........
示例4: Update
static void
Update(void)
{
TCHAR sTmp[1000];
FlightStatistics &fs = glide_computer.GetFlightStats();
GlidePolar polar = protected_task_manager.get_glide_polar();
const CommonStats& stats = XCSoarInterface::Calculated().common_stats;
switch (page) {
case ANALYSIS_PAGE_BAROGRAPH:
_stprintf(sTmp, _T("%s: %s"), _("Analysis"),
_("Barograph"));
wf->SetCaption(sTmp);
fs.CaptionBarograph(sTmp);
wInfo->SetCaption(sTmp);
SetCalcCaption(_("Settings"));
break;
case ANALYSIS_PAGE_CLIMB:
_stprintf(sTmp, _T("%s: %s"), _("Analysis"),
_("Climb"));
wf->SetCaption(sTmp);
fs.CaptionClimb(sTmp);
wInfo->SetCaption(sTmp);
SetCalcCaption(_("Task calc"));
break;
case ANALYSIS_PAGE_WIND:
_stprintf(sTmp, _T("%s: %s"), _("Analysis"),
_("Wind at Altitude"));
wf->SetCaption(sTmp);
wInfo->SetCaption(_T(""));
SetCalcCaption(_("Set wind"));
break;
case ANALYSIS_PAGE_POLAR:
_stprintf(sTmp, _T("%s: %s (%s %d kg)"), _("Analysis"),
_("Glide Polar"), _("Mass"),
(int)polar.get_all_up_weight());
wf->SetCaption(sTmp);
fs.CaptionPolar(sTmp, polar);
wInfo->SetCaption(sTmp);
SetCalcCaption(_("Settings"));
break;
case ANALYSIS_PAGE_TEMPTRACE:
_stprintf(sTmp, _T("%s: %s"), _("Analysis"),
_("Temp trace"));
wf->SetCaption(sTmp);
fs.CaptionTempTrace(sTmp);
wInfo->SetCaption(sTmp);
SetCalcCaption(_("Settings"));
break;
case ANALYSIS_PAGE_TASK_SPEED:
_stprintf(sTmp, _T("%s: %s"), _("Analysis"),
_("Task speed"));
wf->SetCaption(sTmp);
wInfo->SetCaption(_T(""));
SetCalcCaption(_("Task calc"));
break;
case ANALYSIS_PAGE_TASK:
_stprintf(sTmp, _T("%s: %s"), _("Analysis"),
_("Task"));
wf->SetCaption(sTmp);
fs.CaptionTask(sTmp, XCSoarInterface::Calculated());
wInfo->SetCaption(sTmp);
SetCalcCaption(_("Task calc"));
break;
case ANALYSIS_PAGE_OLC:
_stprintf(sTmp, _T("%s: %s"), _("Analysis"),
_("OnLine Contest"));
wf->SetCaption(sTmp);
TCHAR timetext1[100];
Units::TimeToText(timetext1, (int)stats.olc.time);
TCHAR distance[100];
Units::FormatUserDistance(stats.olc.distance, distance, 100);
_stprintf(sTmp,
(Layout::landscape
? _T("%s:\r\n %s\r\n%s:\r\n %.1f %s\r\n%s: %s\r\n%s: %d %s\r\n")
: _T("%s: %s\r\n%s: %.1f %s\r\n%s: %s\r\n%s: %d %s\r\n")),
_("Distance"),
distance,
_("Score"),
(double)stats.olc.score,
_("pts"),
_("Time"),
timetext1,
_("Speed"),
(int)Units::ToUserUnit(stats.olc.speed, Units::TaskSpeedUnit),
Units::GetTaskSpeedName());
wInfo->SetCaption(sTmp);
SetCalcCaption(_T(""));
break;
case ANALYSIS_PAGE_AIRSPACE:
//.........这里部分代码省略.........
示例5: sqrt
void
GlidePolarTest::TestBallast()
{
polar.SetBallast(fixed(0.25));
ok1(equals(polar.GetBallastLitres(), 25));
ok1(equals(polar.GetBallast(), 0.25));
polar.SetBallastLitres(fixed(50));
ok1(equals(polar.GetBallastLitres(), 50));
ok1(equals(polar.GetBallast(), 0.5));
ok1(equals(polar.GetTotalMass(), 368));
ok1(equals(polar.GetWingLoading(), 37.551020408));
ok1(polar.HasBallast());
fixed loading_factor = sqrt(polar.GetTotalMass() / polar.reference_mass);
ok1(equals(polar.polar.a, polar.ideal_polar.a / loading_factor));
ok1(equals(polar.polar.b, polar.ideal_polar.b));
ok1(equals(polar.polar.c, polar.ideal_polar.c * loading_factor));
ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(80), Unit::KILOMETER_PER_HOUR)),
0.640739));
ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(120), Unit::KILOMETER_PER_HOUR)),
0.928976));
ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(160), Unit::KILOMETER_PER_HOUR)),
1.722908));
ok1(equals(polar.GetVMin(), 21.44464));
ok1(equals(polar.GetVBestLD(), 27.78703));
polar.SetBallast(fixed(0));
ok1(!polar.HasBallast());
}
示例6:
void
GlidePolarTest::TestBasic()
{
polar.Update();
ok1(equals(polar.polar.a, polar.ideal_polar.a));
ok1(equals(polar.polar.b, polar.ideal_polar.b));
ok1(equals(polar.polar.c, polar.ideal_polar.c));
ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(80), Unit::KILOMETER_PER_HOUR)), 0.606));
ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(120), Unit::KILOMETER_PER_HOUR)), 0.99));
ok1(equals(polar.SinkRate(Units::ToSysUnit(fixed(160), Unit::KILOMETER_PER_HOUR)), 1.918));
ok1(equals(polar.GetSMax(), polar.SinkRate(polar.GetVMax())));
ok1(equals(polar.GetVMin(), 19.934640523));
ok1(equals(polar.GetSMin(), polar.SinkRate(polar.GetVMin())));
ok1(equals(polar.GetVTakeoff(), polar.GetVMin() / 2));
ok1(equals(polar.GetVBestLD(), 25.830434162));
ok1(equals(polar.GetSBestLD(), polar.SinkRate(polar.GetVBestLD())));
ok1(equals(polar.GetBestLD(), polar.GetVBestLD() / polar.GetSBestLD()));
ok1(equals(polar.GetTotalMass(), 318));
ok1(equals(polar.GetWingLoading(), 32.448979592));
ok1(equals(polar.GetBallast(), 0));
ok1(equals(polar.GetBallastLitres(), 0));
ok1(polar.IsBallastable());
ok1(!polar.HasBallast());
}
示例7: dlgBasicSettingsShowModal
void
dlgBasicSettingsShowModal()
{
const ComputerSettings &settings = CommonInterface::GetComputerSettings();
glide_polar = settings.glide_polar_task;
wf = LoadDialog(CallBackTable, XCSoarInterface::main_window,
_T("IDR_XML_BASICSETTINGS"));
if (wf == NULL)
return;
changed = false;
wf->SetTimerNotify(OnTimerNotify);
OnTimerNotify(*wf);
SetButtons();
SetBallast();
LoadFormProperty(*wf, _T("prpBugs"), (fixed_one - glide_polar.GetBugs()) * 100);
LoadFormProperty(*wf, _T("prpQNH"), Units::ToUserPressure(settings.pressure.GetHectoPascal()));
WndProperty* wp;
wp = (WndProperty*)wf->FindByName(_T("prpQNH"));
if (wp) {
DataFieldFloat &df = *(DataFieldFloat *)wp->GetDataField();
df.SetMin(Units::ToUserPressure(Units::ToSysUnit(fixed(850), unHectoPascal)));
df.SetMax(Units::ToUserPressure(Units::ToSysUnit(fixed(1300), unHectoPascal)));
df.SetStep(Units::ToUserPressure(Units::ToSysUnit(fixed_one, unHectoPascal)));
df.SetUnits(Units::GetPressureName());
df.SetStep(Units::PressureStep());
df.SetFormat( Units::GetFormatUserPressure());
wp->RefreshDisplay();
}
wp = (WndProperty*)wf->FindByName(_T("prpTemperature"));
if (wp) {
DataFieldFloat &df = *(DataFieldFloat *)wp->GetDataField();
df.SetMin(Units::ToUserTemperature(Units::ToSysUnit(fixed(-50), unGradCelcius)));
df.SetMax(Units::ToUserTemperature(Units::ToSysUnit(fixed(60), unGradCelcius)));
df.SetUnits(Units::GetTemperatureName());
df.Set(Units::ToUserTemperature(settings.forecast_temperature));
wp->RefreshDisplay();
}
if (wf->ShowModal() == mrOK) {
ComputerSettings &settings = CommonInterface::SetComputerSettings();
if (changed) {
settings.glide_polar_task = glide_polar;
if (protected_task_manager != NULL)
protected_task_manager->SetGlidePolar(glide_polar);
}
SaveFormProperty(*wf, _T("prpTemperature"),
ugTemperature, settings.forecast_temperature);
}
delete wf;
}
示例8: RenderMacCready
void
RenderMacCready(Canvas &canvas, const PixelRect rc,
const ChartLook &chart_look,
const GlidePolar &glide_polar)
{
ChartRenderer chart(chart_look, canvas, rc);
if (!glide_polar.IsValid()) {
chart.DrawNoData();
return;
}
chart.ScaleXFromValue(0);
chart.ScaleXFromValue(MAX_MACCREADY);
chart.ScaleYFromValue(0);
chart.ScaleYFromValue(glide_polar.GetVMax());
chart.DrawXGrid(Units::ToSysVSpeed(1), 1, ChartRenderer::UnitFormat::NUMERIC);
chart.DrawYGrid(Units::ToSysSpeed(10), 10, ChartRenderer::UnitFormat::NUMERIC);
GlidePolar gp = glide_polar;
double m = 0;
double m_last;
gp.SetMC(m);
double v_last = gp.GetVBestLD();
double vav_last = 0;
do {
m_last = m;
m+= MAX_MACCREADY/STEPS_MACCREADY;
gp.SetMC(m);
const double v = gp.GetVBestLD();
const double vav = gp.GetAverageSpeed();
chart.DrawLine(m_last, v_last, m, v, ChartLook::STYLE_BLACK);
chart.DrawLine(m_last, vav_last, m, vav, ChartLook::STYLE_BLUETHINDASH);
v_last = v;
vav_last = vav;
} while (m<MAX_MACCREADY);
// draw current MC setting
chart.DrawLine(glide_polar.GetMC(), 0, glide_polar.GetMC(), glide_polar.GetVMax(),
ChartLook::STYLE_REDTHICKDASH);
// draw labels and other overlays
gp.SetMC(0.9*MAX_MACCREADY);
chart.DrawLabel(_T("Vopt"), 0.9*MAX_MACCREADY, gp.GetVBestLD());
gp.SetMC(0.9*MAX_MACCREADY);
chart.DrawLabel(_T("Vave"), 0.9*MAX_MACCREADY, gp.GetAverageSpeed());
chart.DrawYLabel(_T("V"), Units::GetSpeedName());
chart.DrawXLabel(_T("MC"), Units::GetVerticalSpeedName());
RenderGlidePolarInfo(canvas, rc, chart_look, glide_polar);
}
示例9: p_start
bool
AbortTask::FillReachable(const AircraftState &state,
AlternateVector &approx_waypoints,
const GlidePolar &polar, bool only_airfield,
bool final_glide, bool safety)
{
if (IsTaskFull() || approx_waypoints.empty())
return false;
const AGeoPoint p_start(state.location, state.altitude);
bool found_final_glide = false;
reservable_priority_queue<Alternate, AlternateVector, AbortRank> q;
q.reserve(32);
for (auto v = approx_waypoints.begin(); v != approx_waypoints.end();) {
if (only_airfield && !v->waypoint.IsAirport()) {
++v;
continue;
}
UnorderedTaskPoint t(v->waypoint, task_behaviour);
GlideResult result =
TaskSolution::GlideSolutionRemaining(t, state, polar);
/* calculate time_virtual, which is needed by AbortRank */
result.CalcVInvSpeed(polar.GetInvMC());
if (IsReachable(result, final_glide)) {
bool intersects = false;
const bool is_reachable_final = IsReachable(result, true);
if (intersection_test && final_glide && is_reachable_final)
intersects = intersection_test->Intersects(
AGeoPoint(v->waypoint.location, result.min_height));
if (!intersects) {
q.push(Alternate(v->waypoint, result));
// remove it since it's already in the list now
approx_waypoints.erase(v);
if (is_reachable_final)
found_final_glide = true;
continue; // skip incrementing v since we just erased it
}
}
++v;
}
while (!q.empty() && !IsTaskFull()) {
const Alternate top = q.top();
task_points.push_back(AlternateTaskPoint(top.waypoint, task_behaviour,
top.solution));
const int i = task_points.size() - 1;
if (task_points[i].GetWaypoint().id == active_waypoint)
active_task_point = i;
q.pop();
}
return found_final_glide;
}
示例10: RenderVarioHistogram
void
RenderVarioHistogram(Canvas &canvas, const PixelRect rc,
const ChartLook &chart_look,
const FlightStatistics &fs,
const GlidePolar &glide_polar)
{
ChartRenderer chart(chart_look, canvas, rc);
const auto acc = std::max(fs.vario_cruise_histogram.GetAccumulator(),
fs.vario_circling_histogram.GetAccumulator());
if (!acc) {
chart.DrawNoData();
return;
}
const auto scale = std::max(fs.vario_cruise_histogram.GetMaxY(),
fs.vario_circling_histogram.GetMaxY()) * 1.2;
chart.ScaleXFromValue(0);
chart.ScaleXFromValue(scale);
const auto s = -glide_polar.GetSBestLD();
const auto mc = glide_polar.GetMC();
chart.ScaleYFromValue(fs.vario_cruise_histogram.GetMinX());
chart.ScaleYFromValue(fs.vario_cruise_histogram.GetMaxX());
chart.ScaleYFromValue(s);
chart.ScaleYFromValue(mc);
// draw red area at higher than cruise sink rate, blue area above mc
{
PixelRect rc_upper = chart.GetChartRect();
rc_upper.bottom = chart.ScreenY(mc);
DrawVerticalGradient(canvas, rc_upper,
chart_look.color_positive, COLOR_WHITE, COLOR_WHITE);
}
{
PixelRect rc_lower = chart.GetChartRect();
rc_lower.top = chart.ScreenY(s);
DrawVerticalGradient(canvas, rc_lower,
COLOR_WHITE, chart_look.color_negative, COLOR_WHITE);
}
canvas.SelectNullPen();
canvas.Select(chart_look.black_brush);
chart.DrawFilledLineGraph(fs.vario_circling_histogram, true);
canvas.Select(chart_look.blank_brush);
chart.DrawFilledLineGraph(fs.vario_cruise_histogram, true);
// draw these after shaded regions, so they overlay
chart.DrawLineGraph(fs.vario_cruise_histogram, ChartLook::STYLE_GREEN, true);
chart.DrawLineGraph(fs.vario_circling_histogram, ChartLook::STYLE_RED, true);
// draw current MC setting
chart.DrawLine(0, mc, scale, mc, ChartLook::STYLE_REDTHICKDASH);
chart.DrawLine(0, s, scale, s, ChartLook::STYLE_BLUETHINDASH);
// draw labels and other overlays
chart.DrawYGrid(Units::ToSysVSpeed(1), 1, ChartRenderer::UnitFormat::NUMERIC);
const double tref = chart.GetXMin()*0.1+chart.GetXMax()*0.9;
chart.DrawLabel(_T("MC"), tref, mc);
chart.DrawLabel(_T("S cruise"), tref, s);
chart.DrawYLabel(_T("w"), Units::GetVerticalSpeedName());
}
示例11: wvv
bool
AbortTask::UpdateSample(const AircraftState &state,
const GlidePolar &glide_polar,
bool full_update)
{
assert(state.location.IsValid());
Clear();
unsigned active_waypoint_on_entry;
if (is_active)
active_waypoint_on_entry = active_waypoint;
else {
active_waypoint = 0;
active_waypoint_on_entry = (unsigned) -1 ;
}
active_task_point = 0; // default to best result if can't find user-set one
if (!glide_polar.IsValid())
/* can't work without a polar */
return false;
AlternateList approx_waypoints;
approx_waypoints.reserve(128);
WaypointVisitorVector wvv(approx_waypoints);
waypoints.VisitWithinRange(state.location,
GetAbortRange(state, glide_polar), wvv);
if (approx_waypoints.empty()) {
/** @todo increase range */
return false;
}
// sort by arrival time
// first try with final glide only
reachable_landable |= FillReachable(state, approx_waypoints, glide_polar,
true, true, true);
reachable_landable |= FillReachable(state, approx_waypoints, glide_polar,
false, true, true);
// inform clients that the landable reachable scan has been performed
ClientUpdate(state, true);
// now try without final glide constraint and not preferring airports
FillReachable(state, approx_waypoints, glide_polar, false, false, false);
// inform clients that the landable unreachable scan has been performed
ClientUpdate(state, false);
if (task_points.size()) {
const TaskWaypoint &task_point = task_points[active_task_point].point;
active_waypoint = task_point.GetWaypoint().id;
if (is_active && (active_waypoint_on_entry != active_waypoint)) {
stats.start.Reset();
force_full_update = true;
return true;
}
}
return false; // nothing to do
}
示例12:
MacCready::MacCready(const GlideSettings &_settings,
const GlidePolar &_glide_polar)
:settings(_settings), glide_polar(_glide_polar),
cruise_efficiency(_glide_polar.GetCruiseEfficiency()) {}
示例13: vector
static void
Test(const fixed distance, const fixed altitude, const SpeedVector wind)
{
const GeoVector vector(distance, Angle::Zero());
const GlideState state(vector,
fixed(2000), fixed(2000) + altitude,
wind);
const GlideResult result =
MacCready::Solve(glide_settings, glide_polar, state);
const fixed ld_ground = glide_polar.GetLDOverGround(vector.bearing, wind);
const fixed mc = glide_polar.GetMC();
const fixed v_climb_progress = mc * ld_ground - state.head_wind;
const fixed initial_glide_distance = state.altitude_difference * ld_ground;
if (initial_glide_distance >= distance ||
(!positive(mc) && !positive(v_climb_progress))) {
/* reachable by pure glide */
ok1(result.validity == GlideResult::Validity::OK);
const fixed best_speed =
glide_polar.GetBestGlideRatioSpeed(state.head_wind);
const fixed best_sink = glide_polar.SinkRate(best_speed);
const fixed ld_ground2 = positive(mc)
? ld_ground
: (best_speed - state.head_wind) / best_sink;
const fixed height_glide = distance / ld_ground2;
const fixed height_climb = fixed(0);
const fixed altitude_difference = altitude - height_glide;
ok1(equals(result.head_wind, wind.norm));
ok1(equals(result.vector.distance, distance));
ok1(equals(result.height_climb, height_climb));
ok1(equals(result.height_glide, height_glide));
ok1(equals(result.altitude_difference, altitude_difference));
return;
}
if (!positive(v_climb_progress)) {
/* excessive wind */
ok1(result.validity == GlideResult::Validity::WIND_EXCESSIVE);
return;
}
/*
const fixed drifted_distance = (distance - initial_glide_distance)
* state.head_wind / v_climb_progress;
*/
const fixed drifted_height_climb = (distance - initial_glide_distance)
* mc / v_climb_progress;
const fixed drifted_height_glide =
drifted_height_climb + state.altitude_difference;
const fixed height_glide = drifted_height_glide;
const fixed altitude_difference = altitude - height_glide;
const fixed height_climb = drifted_height_climb;
const fixed time_climb = height_climb / mc;
const fixed time_glide = height_glide / glide_polar.GetSBestLD();
const fixed time_elapsed = time_climb + time_glide;
/* more tolerance with strong wind because this unit test doesn't
optimise pure glide */
const int accuracy = positive(altitude) && positive(wind.norm)
? (wind.norm > fixed(5) ? 5 : 10)
: ACCURACY;
ok1(result.validity == GlideResult::Validity::OK);
ok1(equals(result.head_wind, wind.norm));
ok1(equals(result.vector.distance, distance));
ok1(equals(result.height_climb, height_climb, accuracy));
ok1(equals(result.height_glide, height_glide, accuracy));
ok1(equals(result.altitude_difference, altitude_difference, accuracy));
ok1(equals(result.time_elapsed, time_elapsed, accuracy));
}
示例14: set_cruise_efficiency
/**
* Adjust cruise efficiency of internal glide polar
*
* @param ce Cruise efficiency
*/
void set_cruise_efficiency(fixed ce) {
m_glide_polar.SetCruiseEfficiency(ce);
};
示例15: set_mc
/**
* Adjust MacCready value of internal glide polar
*
* @param mc MacCready value (m/s)
*/
void set_mc(fixed mc) {
m_glide_polar.SetMC(mc);
};