本文整理汇总了C++中GetElementPtrInst::getType方法的典型用法代码示例。如果您正苦于以下问题:C++ GetElementPtrInst::getType方法的具体用法?C++ GetElementPtrInst::getType怎么用?C++ GetElementPtrInst::getType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GetElementPtrInst
的用法示例。
在下文中一共展示了GetElementPtrInst::getType方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: visitGetElementPtrInst
bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
if (!VT)
return false;
IRBuilder<> Builder(&GEPI);
unsigned NumElems = VT->getNumElements();
unsigned NumIndices = GEPI.getNumIndices();
Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
SmallVector<Scatterer, 8> Ops;
Ops.resize(NumIndices);
for (unsigned I = 0; I < NumIndices; ++I)
Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
SmallVector<Value *, 8> Indices;
Indices.resize(NumIndices);
for (unsigned J = 0; J < NumIndices; ++J)
Indices[J] = Ops[J][I];
Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
GEPI.getName() + ".i" + Twine(I));
if (GEPI.isInBounds())
if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
NewGEPI->setIsInBounds();
}
gather(&GEPI, Res);
return true;
}
示例2: handleGetElementPtrInstruction
// -- handle GetElementPtr instruction --
void UnsafeTypeCastingCheck::handleGetElementPtrInstruction (Instruction *inst) {
GetElementPtrInst * ginst = dyn_cast<GetElementPtrInst>(inst);
if (ginst == NULL)
utccAbort("handleGetElementPtrInstruction cannot process with a non-getelementptr instruction");
Value *pt = ginst->getPointerOperand();
UTCC_TYPE pt_ut_self = UH_UT;
UTCC_TYPE pt_ut_base = UH_UT;
UTCC_TYPE pt_ut_element = llvmT2utccT(ginst->getType()->getPointerElementType(), ginst);
if (isVisitedPointer(ginst)) pt_ut_self = queryPointedType(ginst);
if (isVisitedPointer(pt)) pt_ut_base = queryPointedType(pt);
setPointedType(ginst, utSaturate(pt_ut_element,
utSaturate(pt_ut_self, pt_ut_base)));
setExprType(ginst, llvmT2utccT(ginst->getType(), ginst));
}
示例3: visitGetElementPtrInst
void GCInvariantVerifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Type *Ty = GEP.getType();
if (!Ty->isPointerTy())
return;
unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
if (!isSpecialAS(AS))
return;
/* We're actually ok with GEPs here, as long as they don't feed into any
uses. Upstream is currently still debating whether CAST(GEP) == GEP(CAST).
In the frontend, we always perform CAST(GEP), so while we can enforce
this invariant when we run directly after the frontend (Strong == 1),
the optimizer will introduce the other form. Thus, we need to allow it
while upstream hasn't decided whether the optimizer is allowed to
introduce these.
*/
if (Strong) {
Check(AS != AddressSpace::Tracked,
"GC tracked values may not appear in GEP expressions."
" You may have to decay the value first", &GEP);
}
}
示例4: runOnModule
//
// Method: runOnModule()
//
// Description:
// Entry point for this LLVM pass.
// Find all GEPs, and simplify them.
//
// Inputs:
// M - A reference to the LLVM module to transform
//
// Outputs:
// M - The transformed LLVM module.
//
// Return value:
// true - The module was modified.
// false - The module was not modified.
//
bool SimplifyGEP::runOnModule(Module& M) {
TD = &getAnalysis<TargetData>();
preprocess(M);
for (Module::iterator F = M.begin(); F != M.end(); ++F){
for (Function::iterator B = F->begin(), FE = F->end(); B != FE; ++B) {
for (BasicBlock::iterator I = B->begin(), BE = B->end(); I != BE; I++) {
if(!(isa<GetElementPtrInst>(I)))
continue;
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
Value *PtrOp = GEP->getOperand(0);
Value *StrippedPtr = PtrOp->stripPointerCasts();
// Check if the GEP base pointer is enclosed in a cast
if (StrippedPtr != PtrOp) {
const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
bool HasZeroPointerIndex = false;
if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(1)))
HasZeroPointerIndex = C->isZero();
// Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
// into : GEP [10 x i8]* X, i32 0, ...
//
// Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
// into : GEP i8* X, ...
//
// This occurs when the program declares an array extern like "int X[];"
if (HasZeroPointerIndex) {
const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
if (const ArrayType *CATy =
dyn_cast<ArrayType>(CPTy->getElementType())) {
// GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
// -> GEP i8* X, ...
SmallVector<Value*, 8> Idx(GEP->idx_begin()+1, GEP->idx_end());
GetElementPtrInst *Res =
GetElementPtrInst::Create(StrippedPtr, Idx, GEP->getName(), GEP);
Res->setIsInBounds(GEP->isInBounds());
GEP->replaceAllUsesWith(Res);
continue;
}
if (const ArrayType *XATy =
dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == XATy->getElementType()) {
// -> GEP [10 x i8]* X, i32 0, ...
// At this point, we know that the cast source type is a pointer
// to an array of the same type as the destination pointer
// array. Because the array type is never stepped over (there
// is a leading zero) we can fold the cast into this GEP.
GEP->setOperand(0, StrippedPtr);
continue;
}
}
}
} else if (GEP->getNumOperands() == 2) {
// Transform things like:
// %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Type *SrcElTy = StrippedPtrTy->getElementType();
Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
if (TD && SrcElTy->isArrayTy() &&
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
TD->getTypeAllocSize(ResElTy)) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP->getContext()));
Idx[1] = GEP->getOperand(1);
Value *NewGEP = GetElementPtrInst::Create(StrippedPtr, Idx,
GEP->getName(), GEP);
// V and GEP are both pointer types --> BitCast
GEP->replaceAllUsesWith(new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP));
continue;
}
// Transform things like:
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
uint64_t ArrayEltSize =
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
// Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
// allow either a mul, shift, or constant here.
//.........这里部分代码省略.........
示例5: runOnLoop
bool PPCLoopPreIncPrep::runOnLoop(Loop *L) {
bool MadeChange = false;
// Only prep. the inner-most loop
if (!L->empty())
return MadeChange;
DEBUG(dbgs() << "PIP: Examining: " << *L << "\n");
BasicBlock *Header = L->getHeader();
const PPCSubtarget *ST =
TM ? TM->getSubtargetImpl(*Header->getParent()) : nullptr;
unsigned HeaderLoopPredCount =
std::distance(pred_begin(Header), pred_end(Header));
// Collect buckets of comparable addresses used by loads and stores.
SmallVector<Bucket, 16> Buckets;
for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
I != IE; ++I) {
for (BasicBlock::iterator J = (*I)->begin(), JE = (*I)->end();
J != JE; ++J) {
Value *PtrValue;
Instruction *MemI;
if (LoadInst *LMemI = dyn_cast<LoadInst>(J)) {
MemI = LMemI;
PtrValue = LMemI->getPointerOperand();
} else if (StoreInst *SMemI = dyn_cast<StoreInst>(J)) {
MemI = SMemI;
PtrValue = SMemI->getPointerOperand();
} else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(J)) {
if (IMemI->getIntrinsicID() == Intrinsic::prefetch) {
MemI = IMemI;
PtrValue = IMemI->getArgOperand(0);
} else continue;
} else continue;
unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace();
if (PtrAddrSpace)
continue;
// There are no update forms for Altivec vector load/stores.
if (ST && ST->hasAltivec() &&
PtrValue->getType()->getPointerElementType()->isVectorTy())
continue;
if (L->isLoopInvariant(PtrValue))
continue;
const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L);
if (const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV)) {
if (LARSCEV->getLoop() != L)
continue;
} else {
continue;
}
bool FoundBucket = false;
for (auto &B : Buckets) {
const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV);
if (const auto *CDiff = dyn_cast<SCEVConstant>(Diff)) {
B.Elements.push_back(BucketElement(CDiff, MemI));
FoundBucket = true;
break;
}
}
if (!FoundBucket) {
if (Buckets.size() == MaxVars)
return MadeChange;
Buckets.push_back(Bucket(LSCEV, MemI));
}
}
}
if (Buckets.empty())
return MadeChange;
BasicBlock *LoopPredecessor = L->getLoopPredecessor();
// If there is no loop predecessor, or the loop predecessor's terminator
// returns a value (which might contribute to determining the loop's
// iteration space), insert a new preheader for the loop.
if (!LoopPredecessor ||
!LoopPredecessor->getTerminator()->getType()->isVoidTy()) {
LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
if (LoopPredecessor)
MadeChange = true;
}
if (!LoopPredecessor)
return MadeChange;
DEBUG(dbgs() << "PIP: Found " << Buckets.size() << " buckets\n");
SmallSet<BasicBlock *, 16> BBChanged;
for (unsigned i = 0, e = Buckets.size(); i != e; ++i) {
// The base address of each bucket is transformed into a phi and the others
// are rewritten as offsets of that variable.
//.........这里部分代码省略.........
示例6: runOnLoop
bool PPCLoopPreIncPrep::runOnLoop(Loop *L) {
bool MadeChange = false;
if (!DL)
return MadeChange;
// Only prep. the inner-most loop
if (!L->empty())
return MadeChange;
BasicBlock *Header = L->getHeader();
const PPCSubtarget *ST =
TM ? TM->getSubtargetImpl(*Header->getParent()) : nullptr;
unsigned HeaderLoopPredCount = 0;
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
PI != PE; ++PI) {
++HeaderLoopPredCount;
}
// Collect buckets of comparable addresses used by loads and stores.
typedef std::multimap<const SCEV *, Instruction *, SCEVLess> Bucket;
SmallVector<Bucket, 16> Buckets;
for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
I != IE; ++I) {
for (BasicBlock::iterator J = (*I)->begin(), JE = (*I)->end();
J != JE; ++J) {
Value *PtrValue;
Instruction *MemI;
if (LoadInst *LMemI = dyn_cast<LoadInst>(J)) {
MemI = LMemI;
PtrValue = LMemI->getPointerOperand();
} else if (StoreInst *SMemI = dyn_cast<StoreInst>(J)) {
MemI = SMemI;
PtrValue = SMemI->getPointerOperand();
} else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(J)) {
if (IMemI->getIntrinsicID() == Intrinsic::prefetch) {
MemI = IMemI;
PtrValue = IMemI->getArgOperand(0);
} else continue;
} else continue;
unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace();
if (PtrAddrSpace)
continue;
// There are no update forms for Altivec vector load/stores.
if (ST && ST->hasAltivec() &&
PtrValue->getType()->getPointerElementType()->isVectorTy())
continue;
if (L->isLoopInvariant(PtrValue))
continue;
const SCEV *LSCEV = SE->getSCEV(PtrValue);
if (!isa<SCEVAddRecExpr>(LSCEV))
continue;
bool FoundBucket = false;
for (unsigned i = 0, e = Buckets.size(); i != e; ++i)
for (Bucket::iterator K = Buckets[i].begin(), KE = Buckets[i].end();
K != KE; ++K) {
const SCEV *Diff = SE->getMinusSCEV(K->first, LSCEV);
if (isa<SCEVConstant>(Diff)) {
Buckets[i].insert(std::make_pair(LSCEV, MemI));
FoundBucket = true;
break;
}
}
if (!FoundBucket) {
Buckets.push_back(Bucket(SCEVLess(SE)));
Buckets[Buckets.size()-1].insert(std::make_pair(LSCEV, MemI));
}
}
}
if (Buckets.empty() || Buckets.size() > MaxVars)
return MadeChange;
BasicBlock *LoopPredecessor = L->getLoopPredecessor();
// If there is no loop predecessor, or the loop predecessor's terminator
// returns a value (which might contribute to determining the loop's
// iteration space), insert a new preheader for the loop.
if (!LoopPredecessor ||
!LoopPredecessor->getTerminator()->getType()->isVoidTy())
LoopPredecessor = InsertPreheaderForLoop(L, this);
if (!LoopPredecessor)
return MadeChange;
SmallSet<BasicBlock *, 16> BBChanged;
for (unsigned i = 0, e = Buckets.size(); i != e; ++i) {
// The base address of each bucket is transformed into a phi and the others
// are rewritten as offsets of that variable.
const SCEVAddRecExpr *BasePtrSCEV =
cast<SCEVAddRecExpr>(Buckets[i].begin()->first);
if (!BasePtrSCEV->isAffine())
//.........这里部分代码省略.........
示例7: if
Value *PropagateJuliaAddrspaces::LiftPointer(Value *V, Type *LocTy, Instruction *InsertPt) {
SmallVector<Value *, 4> Stack;
Value *CurrentV = V;
// Follow pointer casts back, see if we're based on a pointer in
// an untracked address space, in which case we're allowed to drop
// intermediate addrspace casts.
while (true) {
Stack.push_back(CurrentV);
if (isa<BitCastInst>(CurrentV))
CurrentV = cast<BitCastInst>(CurrentV)->getOperand(0);
else if (isa<AddrSpaceCastInst>(CurrentV)) {
CurrentV = cast<AddrSpaceCastInst>(CurrentV)->getOperand(0);
if (!isSpecialAS(getValueAddrSpace(CurrentV)))
break;
}
else if (isa<GetElementPtrInst>(CurrentV)) {
if (LiftingMap.count(CurrentV)) {
CurrentV = LiftingMap[CurrentV];
break;
} else if (Visited.count(CurrentV)) {
return nullptr;
}
Visited.insert(CurrentV);
CurrentV = cast<GetElementPtrInst>(CurrentV)->getOperand(0);
} else
break;
}
if (!CurrentV->getType()->isPointerTy())
return nullptr;
if (isSpecialAS(getValueAddrSpace(CurrentV)))
return nullptr;
// Ok, we're allowed to change the address space of this load, go back and
// reconstitute any GEPs in the new address space.
for (Value *V : llvm::reverse(Stack)) {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
if (!GEP)
continue;
if (LiftingMap.count(GEP)) {
CurrentV = LiftingMap[GEP];
continue;
}
GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(GEP->clone());
ToInsert.push_back(std::make_pair(NewGEP, GEP));
Type *GEPTy = GEP->getSourceElementType();
Type *NewRetTy = cast<PointerType>(GEP->getType())->getElementType()->getPointerTo(getValueAddrSpace(CurrentV));
NewGEP->mutateType(NewRetTy);
if (cast<PointerType>(CurrentV->getType())->getElementType() != GEPTy) {
auto *BCI = new BitCastInst(CurrentV, GEPTy->getPointerTo());
ToInsert.push_back(std::make_pair(BCI, NewGEP));
CurrentV = BCI;
}
NewGEP->setOperand(GetElementPtrInst::getPointerOperandIndex(), CurrentV);
LiftingMap[GEP] = NewGEP;
CurrentV = NewGEP;
}
if (LocTy && cast<PointerType>(CurrentV->getType())->getElementType() != LocTy) {
auto *BCI = new BitCastInst(CurrentV, LocTy->getPointerTo());
ToInsert.push_back(std::make_pair(BCI, InsertPt));
CurrentV = BCI;
}
return CurrentV;
}
示例8: IHandle
Value *llvm::ConvertExpressionToType(Value *V, const Type *Ty,
ValueMapCache &VMC, const TargetData &TD) {
if (V->getType() == Ty) return V; // Already where we need to be?
ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(V);
if (VMCI != VMC.ExprMap.end()) {
const Value *GV = VMCI->second;
const Type *GTy = VMCI->second->getType();
assert(VMCI->second->getType() == Ty);
if (Instruction *I = dyn_cast<Instruction>(V))
ValueHandle IHandle(VMC, I); // Remove I if it is unused now!
return VMCI->second;
}
DEBUG(std::cerr << "CETT: " << (void*)V << " " << *V);
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) {
Constant *CPV = cast<Constant>(V);
// Constants are converted by constant folding the cast that is required.
// We assume here that all casts are implemented for constant prop.
Value *Result = ConstantExpr::getCast(CPV, Ty);
// Add the instruction to the expression map
//VMC.ExprMap[V] = Result;
return Result;
}
BasicBlock *BB = I->getParent();
std::string Name = I->getName(); if (!Name.empty()) I->setName("");
Instruction *Res; // Result of conversion
ValueHandle IHandle(VMC, I); // Prevent I from being removed!
Constant *Dummy = Constant::getNullValue(Ty);
switch (I->getOpcode()) {
case Instruction::Cast:
assert(VMC.NewCasts.count(ValueHandle(VMC, I)) == 0);
Res = new CastInst(I->getOperand(0), Ty, Name);
VMC.NewCasts.insert(ValueHandle(VMC, Res));
break;
case Instruction::Add:
case Instruction::Sub:
Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
Dummy, Dummy, Name);
VMC.ExprMap[I] = Res; // Add node to expression eagerly
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), Ty, VMC, TD));
break;
case Instruction::Shl:
case Instruction::Shr:
Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), Dummy,
I->getOperand(1), Name);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
break;
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
Res = new LoadInst(Constant::getNullValue(PointerType::get(Ty)), Name);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(LI->getPointerOperand(),
PointerType::get(Ty), VMC, TD));
assert(Res->getOperand(0)->getType() == PointerType::get(Ty));
assert(Ty == Res->getType());
assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
break;
}
case Instruction::PHI: {
PHINode *OldPN = cast<PHINode>(I);
PHINode *NewPN = new PHINode(Ty, Name);
VMC.ExprMap[I] = NewPN; // Add node to expression eagerly
while (OldPN->getNumOperands()) {
BasicBlock *BB = OldPN->getIncomingBlock(0);
Value *OldVal = OldPN->getIncomingValue(0);
ValueHandle OldValHandle(VMC, OldVal);
OldPN->removeIncomingValue(BB, false);
Value *V = ConvertExpressionToType(OldVal, Ty, VMC, TD);
NewPN->addIncoming(V, BB);
}
Res = NewPN;
break;
}
case Instruction::Malloc: {
Res = ConvertMallocToType(cast<MallocInst>(I), Ty, Name, VMC, TD);
break;
}
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertible to a pointer type if they have
//.........这里部分代码省略.........
示例9: ExpressionConvertibleToType
// ExpressionConvertibleToType - Return true if it is possible
bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty,
ValueTypeCache &CTMap, const TargetData &TD) {
// Expression type must be holdable in a register.
if (!Ty->isFirstClassType())
return false;
ValueTypeCache::iterator CTMI = CTMap.find(V);
if (CTMI != CTMap.end()) return CTMI->second == Ty;
// If it's a constant... all constants can be converted to a different
// type.
//
if (isa<Constant>(V) && !isa<GlobalValue>(V))
return true;
CTMap[V] = Ty;
if (V->getType() == Ty) return true; // Expression already correct type!
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return false; // Otherwise, we can't convert!
switch (I->getOpcode()) {
case Instruction::Cast:
// We can convert the expr if the cast destination type is losslessly
// convertible to the requested type.
if (!Ty->isLosslesslyConvertibleTo(I->getType())) return false;
// We also do not allow conversion of a cast that casts from a ptr to array
// of X to a *X. For example: cast [4 x %List *] * %val to %List * *
//
if (const PointerType *SPT =
dyn_cast<PointerType>(I->getOperand(0)->getType()))
if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
if (AT->getElementType() == DPT->getElementType())
return false;
break;
case Instruction::Add:
case Instruction::Sub:
if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD) ||
!ExpressionConvertibleToType(I->getOperand(1), Ty, CTMap, TD))
return false;
break;
case Instruction::Shr:
if (!Ty->isInteger()) return false;
if (Ty->isSigned() != V->getType()->isSigned()) return false;
// FALL THROUGH
case Instruction::Shl:
if (!Ty->isInteger()) return false;
if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD))
return false;
break;
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
if (!ExpressionConvertibleToType(LI->getPointerOperand(),
PointerType::get(Ty), CTMap, TD))
return false;
break;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(I);
// Be conservative if we find a giant PHI node.
if (PN->getNumIncomingValues() > 32) return false;
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
return false;
break;
}
case Instruction::Malloc:
if (!MallocConvertibleToType(cast<MallocInst>(I), Ty, CTMap, TD))
return false;
break;
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertible to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
// change the logical offset of the GEP, it is okay and fair to remove them.
// This can change this:
// %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
// %t2 = cast %List * * %t1 to %List *
// into
// %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
//
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) return false; // GEP must always return a pointer...
const Type *PVTy = PTy->getElementType();
// Check to see if there are zero elements that we can remove from the
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
const Type *BaseType = GEP->getPointerOperand()->getType();
//.........这里部分代码省略.........
示例10: while
bool Aa::LowerGepPass::runOnFunction(Function &F)
{
const llvm::Type *ptr_int_type = TD->getIntPtrType(F.getContext());
for (Function::iterator bi = F.begin(), be = F.end(); bi != be; ++bi) {
BasicBlock *bb = bi;
BasicBlock::iterator ii = bb->begin();
while (ii != bb->end()) {
GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(ii);
BasicBlock::iterator gi = ii++;
if (!gep) {
continue;
}
for (llvm::Value::use_iterator ui = gep->use_begin(), ue = gep->use_end();
ui != ue; ++ui) {
Use &u = ui.getUse();
IOCode ioc = get_io_code(u);
if (ioc == NOT_IO)
continue;
u.set(CastInst::CreatePointerCast(gep->getPointerOperand()
, gep->getType()
, "", gep));
}
assert(gep->hasIndices() && "GEP without indices??");
llvm::Value *ptr = gep->getPointerOperand();
const Type *ctype = ptr->getType();
// deal with the base pointer first
llvm::Value *base = gep->getPointerOperand();
std::string base_name = gep->getNameStr() + ".base";
llvm::Value *address = new PtrToIntInst(base, ptr_int_type, base_name + ".cast", gi);
unsigned i = 0;
for (User::op_iterator oi = gep->idx_begin(), oe = gep->idx_end();
oi != oe; ++oi, ++i) {
llvm::Value *index = *oi;
llvm::Value *offset = NULL;
std::stringstream index_name;
index_name << gep->getNameStr() << ".idx." << i;
if (const SequentialType *qtype = dyn_cast<SequentialType>(ctype)) {
// multiply index by size of element
unsigned element_size = getTypePaddedSize(TD, qtype->getElementType());
const llvm::IntegerType *index_type = cast<IntegerType>(index->getType());
ConstantInt *cint = ConstantInt::get(index_type, element_size);
assert(cint && "uh oh!");
offset = BinaryOperator::Create(Instruction::Mul
, cint
, index
, index_name.str()
, gi);
ctype = qtype->getElementType();
} else if (const StructType *stype = dyn_cast<StructType>(ctype)) {
// calculate offset into the struct
const StructLayout *layout = TD->getStructLayout(stype);
unsigned idx = cast<ConstantInt>(index)->getValue().getZExtValue();
unsigned struct_offset = layout->getElementOffset(idx);
offset = ConstantInt::get(ptr_int_type, struct_offset);
ctype = stype->getElementType(idx);
} else
assert(false && "unhandled offset into composite type");
// add offset to the address
assert(address && "uh oh!");
std::stringstream add_name;
add_name << gep->getNameStr() << ".lvl." << i;
if (offset->getType() != address->getType()) {
offset = CastInst::CreateIntegerCast(offset, address->getType()
, false, offset->getName() + ".resized"
, gi);
}
address = BinaryOperator::Create(Instruction::Add
, address, offset
, add_name.str(), gi);
}
if (address->getType() != ptr_int_type)
address = CastInst::CreateIntegerCast(address, ptr_int_type
, false, address->getName() + ".final", gi);
Instruction *new_ptr = new IntToPtrInst(address, gep->getType()
, gep->getName() + ".cast");
ReplaceInstWithInst(bb->getInstList(), gi, new_ptr);
}
}
return true;
}