本文整理汇总了C++中GenCollectedHeap::collector_policy方法的典型用法代码示例。如果您正苦于以下问题:C++ GenCollectedHeap::collector_policy方法的具体用法?C++ GenCollectedHeap::collector_policy怎么用?C++ GenCollectedHeap::collector_policy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GenCollectedHeap
的用法示例。
在下文中一共展示了GenCollectedHeap::collector_policy方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: gc_epilogue
void DefNewGeneration::gc_epilogue(bool full) {
// Check if the heap is approaching full after a collection has
// been done. Generally the young generation is empty at
// a minimum at the end of a collection. If it is not, then
// the heap is approaching full.
GenCollectedHeap* gch = GenCollectedHeap::heap();
clear_should_allocate_from_space();
if (collection_attempt_is_safe()) {
gch->clear_incremental_collection_will_fail();
} else {
gch->set_incremental_collection_will_fail();
if (full) { // we seem to be running out of space
set_should_allocate_from_space();
}
}
if (ZapUnusedHeapArea) {
eden()->check_mangled_unused_area_complete();
from()->check_mangled_unused_area_complete();
to()->check_mangled_unused_area_complete();
}
// update the generation and space performance counters
update_counters();
gch->collector_policy()->counters()->update_counters();
}
示例2: invoke_at_safepoint
/**
* 标记清除的方式回收内存堆的垃圾对象
* 1.第一步: 标记所有存活的对象
* 2.第二步: 计算存活的对象在其内存区压缩后的偏移位置
* 3.第三步: 遍历所有存活的对象并修改其对应的地址映射表
* 4.第四步: 移动存活的对象压缩内存区
*/
void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp,
bool clear_all_softrefs) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
GenCollectedHeap* gch = GenCollectedHeap::heap();
#ifdef ASSERT
if (gch->collector_policy()->should_clear_all_soft_refs()) {
assert(clear_all_softrefs, "Policy should have been checked earlier");
}
#endif
// hook up weak ref data so it can be used during Mark-Sweep
assert(ref_processor() == NULL, "no stomping");
assert(rp != NULL, "should be non-NULL");
_ref_processor = rp;
rp->setup_policy(clear_all_softrefs);
TraceTime t1("Full GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
// When collecting the permanent generation methodOops may be moving,
// so we either have to flush all bcp data or convert it into bci.
CodeCache::gc_prologue();
Threads::gc_prologue();
// Increment the invocation count for the permanent generation, since it is
// implicitly collected whenever we do a full mark sweep collection.
gch->perm_gen()->stat_record()->invocations++;
//本次Gc之前内存堆的使用量
size_t gch_prev_used = gch->used();
// Some of the card table updates below assume that the perm gen is
// also being collected.
assert(level == gch->n_gens() - 1, "All generations are being collected, ergo perm gen too.");
// Capture used regions for each generation that will be
// subject to collection, so that card table adjustments can
// be made intelligently (see clear / invalidate further below).
gch->save_used_regions(level, true /* perm */);
allocate_stacks();
mark_sweep_phase1(level, clear_all_softrefs);
mark_sweep_phase2();
// Don't add any more derived pointers during phase3
COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
mark_sweep_phase3(level);
VALIDATE_MARK_SWEEP_ONLY(
if (ValidateMarkSweep) {
guarantee(_root_refs_stack->length() == 0, "should be empty by now");
}
)
示例3: cmr
DefNewGeneration::DefNewGeneration(ReservedSpace rs,
size_t initial_size,
const char* policy)
: Generation(rs, initial_size),
_promo_failure_drain_in_progress(false),
_should_allocate_from_space(false)
{
MemRegion cmr((HeapWord*)_virtual_space.low(),
(HeapWord*)_virtual_space.high());
GenCollectedHeap* gch = GenCollectedHeap::heap();
gch->barrier_set()->resize_covered_region(cmr);
_eden_space = new ContiguousSpace();
_from_space = new ContiguousSpace();
_to_space = new ContiguousSpace();
if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
vm_exit_during_initialization("Could not allocate a new gen space");
}
// Compute the maximum eden and survivor space sizes. These sizes
// are computed assuming the entire reserved space is committed.
// These values are exported as performance counters.
uintx alignment = gch->collector_policy()->space_alignment();
uintx size = _virtual_space.reserved_size();
_max_survivor_size = compute_survivor_size(size, alignment);
_max_eden_size = size - (2*_max_survivor_size);
// allocate the performance counters
GenCollectorPolicy* gcp = gch->gen_policy();
// Generation counters -- generation 0, 3 subspaces
_gen_counters = new GenerationCounters("new", 0, 3,
gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
_gc_counters = new CollectorCounters(policy, 0);
_eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
_gen_counters);
_from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
_gen_counters);
_to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
_gen_counters);
compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
update_counters();
_old_gen = NULL;
_tenuring_threshold = MaxTenuringThreshold;
_pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
_gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
}
示例4: compute_new_size
void ASParNewGeneration::compute_new_size() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"not a CMS generational heap");
CMSAdaptiveSizePolicy* size_policy =
(CMSAdaptiveSizePolicy*)gch->gen_policy()->size_policy();
assert(size_policy->is_gc_cms_adaptive_size_policy(),
"Wrong type of size policy");
size_t survived = from()->used();
if (!survivor_overflow()) {
// Keep running averages on how much survived
size_policy->avg_survived()->sample(survived);
} else {
size_t promoted =
(size_t) next_gen()->gc_stats()->avg_promoted()->last_sample();
assert(promoted < gch->capacity(), "Conversion problem?");
size_t survived_guess = survived + promoted;
size_policy->avg_survived()->sample(survived_guess);
}
size_t survivor_limit = max_survivor_size();
_tenuring_threshold =
size_policy->compute_survivor_space_size_and_threshold(
_survivor_overflow,
_tenuring_threshold,
survivor_limit);
size_policy->avg_young_live()->sample(used());
size_policy->avg_eden_live()->sample(eden()->used());
size_policy->compute_young_generation_free_space(eden()->capacity(),
max_gen_size());
resize(size_policy->calculated_eden_size_in_bytes(),
size_policy->calculated_survivor_size_in_bytes());
if (UsePerfData) {
CMSGCAdaptivePolicyCounters* counters =
(CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
assert(counters->kind() ==
GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
"Wrong kind of counters");
counters->update_tenuring_threshold(_tenuring_threshold);
counters->update_survivor_overflowed(_survivor_overflow);
counters->update_young_capacity(capacity());
}
}
示例5: verify
void CardTableRS::verify() {
// At present, we only know how to verify the card table RS for
// generational heaps.
VerifyCTGenClosure blk(this);
CollectedHeap* ch = Universe::heap();
// We will do the perm-gen portion of the card table, too.
Generation* pg = SharedHeap::heap()->perm_gen();
HeapWord* pg_boundary = pg->reserved().start();
if (ch->kind() == CollectedHeap::GenCollectedHeap) {
GenCollectedHeap::heap()->generation_iterate(&blk, false);
_ct_bs->verify();
// If the old gen collections also collect perm, then we are only
// interested in perm-to-young pointers, not perm-to-old pointers.
GenCollectedHeap* gch = GenCollectedHeap::heap();
CollectorPolicy* cp = gch->collector_policy();
if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
pg_boundary = gch->get_gen(1)->reserved().start();
}
}
VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
}
示例6: collect
void DefNewGeneration::collect(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_tlab) {
assert(full || size > 0, "otherwise we don't want to collect");
GenCollectedHeap* gch = GenCollectedHeap::heap();
_gc_timer->register_gc_start();
DefNewTracer gc_tracer;
gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
_next_gen = gch->next_gen(this);
// If the next generation is too full to accommodate promotion
// from this generation, pass on collection; let the next generation
// do it.
if (!collection_attempt_is_safe()) {
if (Verbose && PrintGCDetails) {
gclog_or_tty->print(" :: Collection attempt not safe :: ");
}
gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
return;
}
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
init_assuming_no_promotion_failure();
GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
// Capture heap used before collection (for printing).
size_t gch_prev_used = gch->used();
gch->trace_heap_before_gc(&gc_tracer);
SpecializationStats::clear();
// These can be shared for all code paths
IsAliveClosure is_alive(this);
ScanWeakRefClosure scan_weak_ref(this);
age_table()->clear();
to()->clear(SpaceDecorator::Mangle);
gch->rem_set()->prepare_for_younger_refs_iterate(false);
assert(gch->no_allocs_since_save_marks(0),
"save marks have not been newly set.");
// Not very pretty.
CollectorPolicy* cp = gch->collector_policy();
FastScanClosure fsc_with_no_gc_barrier(this, false);
FastScanClosure fsc_with_gc_barrier(this, true);
KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
gch->rem_set()->klass_rem_set());
set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
&fsc_with_no_gc_barrier,
&fsc_with_gc_barrier);
assert(gch->no_allocs_since_save_marks(0),
"save marks have not been newly set.");
int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
gch->gen_process_strong_roots(_level,
true, // Process younger gens, if any,
// as strong roots.
true, // activate StrongRootsScope
true, // is scavenging
SharedHeap::ScanningOption(so),
&fsc_with_no_gc_barrier,
true, // walk *all* scavengable nmethods
&fsc_with_gc_barrier,
&klass_scan_closure);
// "evacuate followers".
evacuate_followers.do_void();
FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ReferenceProcessor* rp = ref_processor();
rp->setup_policy(clear_all_soft_refs);
const ReferenceProcessorStats& stats =
rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
NULL, _gc_timer);
gc_tracer.report_gc_reference_stats(stats);
if (!_promotion_failed) {
// Swap the survivor spaces.
eden()->clear(SpaceDecorator::Mangle);
from()->clear(SpaceDecorator::Mangle);
if (ZapUnusedHeapArea) {
// This is now done here because of the piece-meal mangling which
// can check for valid mangling at intermediate points in the
// collection(s). When a minor collection fails to collect
// sufficient space resizing of the young generation can occur
// an redistribute the spaces in the young generation. Mangle
// here so that unzapped regions don't get distributed to
//.........这里部分代码省略.........
示例7: invoke_at_safepoint
void GenMarkSweep::invoke_at_safepoint(ReferenceProcessor* rp, bool clear_all_softrefs) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
GenCollectedHeap* gch = GenCollectedHeap::heap();
#ifdef ASSERT
if (gch->collector_policy()->should_clear_all_soft_refs()) {
assert(clear_all_softrefs, "Policy should have been checked earlier");
}
#endif
// hook up weak ref data so it can be used during Mark-Sweep
assert(ref_processor() == NULL, "no stomping");
assert(rp != NULL, "should be non-NULL");
set_ref_processor(rp);
rp->setup_policy(clear_all_softrefs);
gch->trace_heap_before_gc(_gc_tracer);
// When collecting the permanent generation Method*s may be moving,
// so we either have to flush all bcp data or convert it into bci.
CodeCache::gc_prologue();
// Increment the invocation count
_total_invocations++;
// Capture used regions for each generation that will be
// subject to collection, so that card table adjustments can
// be made intelligently (see clear / invalidate further below).
gch->save_used_regions();
allocate_stacks();
mark_sweep_phase1(clear_all_softrefs);
mark_sweep_phase2();
// Don't add any more derived pointers during phase3
#if defined(COMPILER2) || INCLUDE_JVMCI
assert(DerivedPointerTable::is_active(), "Sanity");
DerivedPointerTable::set_active(false);
#endif
mark_sweep_phase3();
mark_sweep_phase4();
restore_marks();
// Set saved marks for allocation profiler (and other things? -- dld)
// (Should this be in general part?)
gch->save_marks();
deallocate_stacks();
// If compaction completely evacuated the young generation then we
// can clear the card table. Otherwise, we must invalidate
// it (consider all cards dirty). In the future, we might consider doing
// compaction within generations only, and doing card-table sliding.
CardTableRS* rs = gch->rem_set();
Generation* old_gen = gch->old_gen();
// Clear/invalidate below make use of the "prev_used_regions" saved earlier.
if (gch->young_gen()->used() == 0) {
// We've evacuated the young generation.
rs->clear_into_younger(old_gen);
} else {
// Invalidate the cards corresponding to the currently used
// region and clear those corresponding to the evacuated region.
rs->invalidate_or_clear(old_gen);
}
CodeCache::gc_epilogue();
JvmtiExport::gc_epilogue();
// refs processing: clean slate
set_ref_processor(NULL);
// Update heap occupancy information which is used as
// input to soft ref clearing policy at the next gc.
Universe::update_heap_info_at_gc();
// Update time of last gc for all generations we collected
// (which currently is all the generations in the heap).
// We need to use a monotonically non-decreasing time in ms
// or we will see time-warp warnings and os::javaTimeMillis()
// does not guarantee monotonicity.
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
gch->update_time_of_last_gc(now);
gch->trace_heap_after_gc(_gc_tracer);
}
示例8: collect
void DefNewGeneration::collect(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_tlab) {
assert(full || size > 0, "otherwise we don't want to collect");
GenCollectedHeap* gch = GenCollectedHeap::heap();
_next_gen = gch->next_gen(this);
assert(_next_gen != NULL,
"This must be the youngest gen, and not the only gen");
// If the next generation is too full to accomodate promotion
// from this generation, pass on collection; let the next generation
// do it.
if (!collection_attempt_is_safe()) {
gch->set_incremental_collection_will_fail();
return;
}
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
init_assuming_no_promotion_failure();
TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
// Capture heap used before collection (for printing).
size_t gch_prev_used = gch->used();
SpecializationStats::clear();
// These can be shared for all code paths
IsAliveClosure is_alive(this);
ScanWeakRefClosure scan_weak_ref(this);
age_table()->clear();
to()->clear(SpaceDecorator::Mangle);
gch->rem_set()->prepare_for_younger_refs_iterate(false);
assert(gch->no_allocs_since_save_marks(0),
"save marks have not been newly set.");
// Not very pretty.
CollectorPolicy* cp = gch->collector_policy();
FastScanClosure fsc_with_no_gc_barrier(this, false);
FastScanClosure fsc_with_gc_barrier(this, true);
set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
&fsc_with_no_gc_barrier,
&fsc_with_gc_barrier);
assert(gch->no_allocs_since_save_marks(0),
"save marks have not been newly set.");
gch->gen_process_strong_roots(_level,
true, // Process younger gens, if any,
// as strong roots.
true, // activate StrongRootsScope
false, // not collecting perm generation.
SharedHeap::SO_AllClasses,
&fsc_with_no_gc_barrier,
true, // walk *all* scavengable nmethods
&fsc_with_gc_barrier);
// "evacuate followers".
evacuate_followers.do_void();
FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ReferenceProcessor* rp = ref_processor();
rp->setup_policy(clear_all_soft_refs);
rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
NULL);
if (!promotion_failed()) {
// Swap the survivor spaces.
eden()->clear(SpaceDecorator::Mangle);
from()->clear(SpaceDecorator::Mangle);
if (ZapUnusedHeapArea) {
// This is now done here because of the piece-meal mangling which
// can check for valid mangling at intermediate points in the
// collection(s). When a minor collection fails to collect
// sufficient space resizing of the young generation can occur
// an redistribute the spaces in the young generation. Mangle
// here so that unzapped regions don't get distributed to
// other spaces.
to()->mangle_unused_area();
}
swap_spaces();
assert(to()->is_empty(), "to space should be empty now");
// Set the desired survivor size to half the real survivor space
_tenuring_threshold =
age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
if (PrintGC && !PrintGCDetails) {
gch->print_heap_change(gch_prev_used);
}
} else {
assert(HandlePromotionFailure,
"Should not be here unless promotion failure handling is on");
assert(_promo_failure_scan_stack != NULL &&
//.........这里部分代码省略.........
示例9: invoke_at_safepoint
void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp, bool clear_all_softrefs) {
guarantee(level == 1, "We always collect both old and young.");
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
GenCollectedHeap* gch = GenCollectedHeap::heap();
#ifdef ASSERT
if (gch->collector_policy()->should_clear_all_soft_refs()) {
assert(clear_all_softrefs, "Policy should have been checked earlier");
}
#endif
// hook up weak ref data so it can be used during Mark-Sweep
assert(ref_processor() == NULL, "no stomping");
assert(rp != NULL, "should be non-NULL");
_ref_processor = rp;
rp->setup_policy(clear_all_softrefs);
GCTraceTime t1(GCCauseString("Full GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, _gc_tracer->gc_id());
gch->trace_heap_before_gc(_gc_tracer);
// When collecting the permanent generation Method*s may be moving,
// so we either have to flush all bcp data or convert it into bci.
CodeCache::gc_prologue();
Threads::gc_prologue();
// Increment the invocation count
_total_invocations++;
// Capture heap size before collection for printing.
size_t gch_prev_used = gch->used();
// Capture used regions for each generation that will be
// subject to collection, so that card table adjustments can
// be made intelligently (see clear / invalidate further below).
gch->save_used_regions(level);
allocate_stacks();
mark_sweep_phase1(level, clear_all_softrefs);
mark_sweep_phase2();
// Don't add any more derived pointers during phase3
COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
mark_sweep_phase3(level);
mark_sweep_phase4();
restore_marks();
// Set saved marks for allocation profiler (and other things? -- dld)
// (Should this be in general part?)
gch->save_marks();
deallocate_stacks();
// If compaction completely evacuated all generations younger than this
// one, then we can clear the card table. Otherwise, we must invalidate
// it (consider all cards dirty). In the future, we might consider doing
// compaction within generations only, and doing card-table sliding.
bool all_empty = true;
for (int i = 0; all_empty && i < level; i++) {
Generation* g = gch->get_gen(i);
all_empty = all_empty && gch->get_gen(i)->used() == 0;
}
GenRemSet* rs = gch->rem_set();
Generation* old_gen = gch->get_gen(level);
// Clear/invalidate below make use of the "prev_used_regions" saved earlier.
if (all_empty) {
// We've evacuated all generations below us.
rs->clear_into_younger(old_gen);
} else {
// Invalidate the cards corresponding to the currently used
// region and clear those corresponding to the evacuated region.
rs->invalidate_or_clear(old_gen);
}
Threads::gc_epilogue();
CodeCache::gc_epilogue();
JvmtiExport::gc_epilogue();
if (PrintGC && !PrintGCDetails) {
gch->print_heap_change(gch_prev_used);
}
// refs processing: clean slate
_ref_processor = NULL;
// Update heap occupancy information which is used as
// input to soft ref clearing policy at the next gc.
Universe::update_heap_info_at_gc();
// Update time of last gc for all generations we collected
// (which curently is all the generations in the heap).
// We need to use a monotonically non-deccreasing time in ms
// or we will see time-warp warnings and os::javaTimeMillis()
// does not guarantee monotonicity.
//.........这里部分代码省略.........
示例10: collect
void DefNewGeneration::collect(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_large_noref,
bool is_tlab) {
assert(full || size > 0, "otherwise we don't want to collect");
GenCollectedHeap* gch = GenCollectedHeap::heap();
_next_gen = gch->next_gen(this);
assert(_next_gen != NULL,
"This must be the youngest gen, and not the only gen");
// If the next generation is too full to accomodate worst-case promotion
// from this generation, pass on collection; let the next generation
// do it.
if (!full_promotion_would_succeed()) {
gch->set_incremental_collection_will_fail();
if (PrintGC && Verbose) {
gclog_or_tty->print_cr("DefNewGeneration::collect"
" contiguous_available: " SIZE_FORMAT " < used: " SIZE_FORMAT,
_next_gen->max_contiguous_available(), used());
}
return;
}
TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
// Capture heap used before collection (for printing).
size_t gch_prev_used = gch->used();
SpecializationStats::clear();
// These can be shared for all code paths
IsAliveClosure is_alive(this);
ScanWeakRefClosure scan_weak_ref(this);
age_table()->clear();
to()->clear();
gch->rem_set()->prepare_for_younger_refs_iterate(false);
assert(gch->no_allocs_since_save_marks(0),
"save marks have not been newly set.");
// Weak refs.
// FIXME: Are these storage leaks, or are they resource objects?
NOT_COMPILER2(ReferencePolicy *soft_ref_policy = new LRUCurrentHeapPolicy());
COMPILER2_ONLY(ReferencePolicy *soft_ref_policy = new LRUMaxHeapPolicy());
// Not very pretty.
CollectorPolicy* cp = gch->collector_policy();
if (!cp->is_train_policy()) {
FastScanClosure fsc_with_no_gc_barrier(this, false);
FastScanClosure fsc_with_gc_barrier(this, true);
FastEvacuateFollowersClosure evacuate_followers(gch, _level,
&fsc_with_no_gc_barrier,
&fsc_with_gc_barrier);
assert(gch->no_allocs_since_save_marks(0),
"save marks have not been newly set.");
gch->process_strong_roots(_level,
true, // Process younger gens, if any, as
// strong roots.
false,// not collecting permanent generation.
GenCollectedHeap::CSO_AllClasses,
&fsc_with_gc_barrier,
&fsc_with_no_gc_barrier);
// "evacuate followers".
evacuate_followers.do_void();
FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ref_processor()->process_discovered_references(soft_ref_policy,
&is_alive,
&keep_alive,
&evacuate_followers);
} else { // Train policy
ScanClosure sc_with_no_gc_barrier(this, false);
ScanClosure sc_with_gc_barrier(this, true);
EvacuateFollowersClosure evacuate_followers(gch, _level,
&sc_with_no_gc_barrier,
&sc_with_gc_barrier);
gch->process_strong_roots(_level,
true, // Process younger gens, if any, as
// strong roots.
false,// not collecting perm generation.
GenCollectedHeap::CSO_AllClasses,
&sc_with_gc_barrier,
&sc_with_no_gc_barrier);
// "evacuate followers".
evacuate_followers.do_void();
TrainPolicyKeepAliveClosure keep_alive((TrainGeneration*)_next_gen,
&scan_weak_ref);
ref_processor()->process_discovered_references(soft_ref_policy,
&is_alive,
&keep_alive,
&evacuate_followers);
//.........这里部分代码省略.........