本文整理汇总了C++中GLUTWindowRefPtr::getPort方法的典型用法代码示例。如果您正苦于以下问题:C++ GLUTWindowRefPtr::getPort方法的具体用法?C++ GLUTWindowRefPtr::getPort怎么用?C++ GLUTWindowRefPtr::getPort使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GLUTWindowRefPtr
的用法示例。
在下文中一共展示了GLUTWindowRefPtr::getPort方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: doMain
//
// setup scene
//
static int doMain(int argc, char *argv[])
{
preloadSharedObject("OSGFileIO");
preloadSharedObject("OSGImageFileIO");
osgInit(argc,argv);
int winid = setupGLUT(&argc, argv);
win = GLUTWindow::create();
win->setGlutId(winid);
win->init();
if(argc < 2)
{
FWARNING(("No file given!\n"));
FWARNING(("Supported file formats:\n"));
std::list<const char*> suffixes;
SceneFileHandler::the()->getSuffixList(suffixes);
for(std::list<const char*>::iterator it = suffixes.begin();
it != suffixes.end();
++it)
{
FWARNING(("%s\n", *it));
}
staticScene = createStaticScene();
}
else
{
staticScene = SceneFileHandler::the()->read(argv[1]);
}
dynamicScene = createDynamicScene();
commitChanges();
mgr = SimpleSceneManager::create();
NodeUnrecPtr root = makeCoredNode<Group>();
root->addChild(staticScene);
mgr->setWindow(win);
mgr->setRoot (root);
GradientBackgroundUnrecPtr background = GradientBackground::create();
background->addLine(Color3f(0,0,0), 0);
background->addLine(Color3f(1,1,1), 1);
staticVp = win->getPort(0);
staticVp->setBackground(background);
camera = staticVp->getCamera();
mgr->showAll();
return 0;
}
示例2: doMain
//
// setup scene
//
static int doMain(int argc, char *argv[])
{
preloadSharedObject("OSGFileIO");
preloadSharedObject("OSGImageFileIO");
osgInit(argc,argv);
int winid = setupGLUT(&argc, argv);
win = GLUTWindow::create();
win->setGlutId(winid);
win->init();
if(argc < 2)
{
FWARNING(("No file given!\n"));
FWARNING(("Supported file formats:\n"));
std::list<const char*> suffixes;
SceneFileHandler::the()->getSuffixList(suffixes);
for(std::list<const char*>::iterator it = suffixes.begin();
it != suffixes.end();
++it)
{
FWARNING(("%s\n", *it));
}
scene = makeTorus(.5, 2, 16, 16);
}
else
{
scene = SceneFileHandler::the()->read(argv[1]);
}
commitChanges();
mgr = new SimpleSceneManager;
mgr->setWindow(win);
mgr->setRoot (scene);
GradientBackgroundUnrecPtr background = GradientBackground::create();
background->addLine(Color3f(0,0,0), 0);
background->addLine(Color3f(1,1,1), 1);
Viewport* viewport = win->getPort(0);
viewport->setBackground(background);
mgr->showAll();
return 0;
}
示例3: main
// Initialize GLUT & OpenSG and set up the scene
int main(int argc, char **argv)
{
// OSG init
osgInit(argc,argv);
// GLUT init
int winid = setupGLUT(&argc, argv);
if(argc >= 2)
scene = SceneFileHandler::the()->read(argv[1]);
else
scene = SceneFileHandler::the()->read("Data/tie.wrl");
if(scene == NULL)
scene = makeTorus(0.3, 4, 16, 64);
// init material
phong_chunk = createPhongShaderMaterial();
// get all the Materials of the current scene
getAllMaterials(scene, materials);
// add the phong material chunk to every found material
for(int i = 0; i < materials.size(); ++i)
{
(materials[i])->addChunk(phong_chunk);
}
phong_active = true;
// open a new scope, because the pointers below should go out of scope
// before entering glutMainLoop.
// Otherwise OpenSG will complain about objects being alive after shutdown.
{
// the connection between GLUT and OpenSG
GLUTWindowRefPtr gwin = GLUTWindow::create();
gwin->setGlutId(winid);
gwin->init ( );
// create the SimpleSceneManager helper
_mgr = new SimpleSceneManager;
// tell the manager what to manage
_mgr->setWindow (gwin );
_mgr->setRoot (scene);
_mgr->turnHeadlightOn( );
commitChanges();
// show the whole scene
_mgr->showAll();
// create a gradient background.
GradientBackgroundRefPtr gbg = GradientBackground::create();
gbg->clearLines();
gbg->addLine(Color3f(0.7, 0.7, 0.8), 0);
gbg->addLine(Color3f(0.0, 0.1, 0.3), 1);
//set gradient background
ViewportRefPtr vp = gwin->getPort(0);
vp->setBackground(gbg);
commitChanges();
}
// GLUT main loop
glutMainLoop();
return 0;
}
示例4: writeHiResScreenShotFBO
//
// FBO solution
//
static void writeHiResScreenShotFBO(const char* name, UInt32 width, UInt32 height)
{
size_t num_ports = win->getMFPort()->size();
if (num_ports == 0)
return;
//
// calc image dimensions
//
UInt32 winWidth = win->getWidth();
UInt32 winHeight = win->getHeight();
if (width < winWidth ) width = winWidth;
if (height < winHeight) height = winHeight;
Real32 a = Real32(winWidth) / Real32(winHeight);
width = UInt32(a*height);
//
// output stream for writing the final image
//
std::ofstream stream(name, std::ios::binary);
if (stream.good() == false)
return;
//
// Setup the FBO
//
FrameBufferObjectUnrecPtr fbo = FrameBufferObject::create();
//
// We use two render buffers. One for the color buffer and one for the depth and
// stencil buffer. This example does not take credit of the stencil buffer. There-
// fore a depth buffer would suffice. However, the use of the combined depth and
// stencil buffer is useful in other contextes and hence used.
//
RenderBufferUnrecPtr colBuf = RenderBuffer::create();
RenderBufferUnrecPtr dsBuf = RenderBuffer::create();
//
// As we would like to read back the FBO color buffer, we must provide a fitting
// image.
//
ImageUnrecPtr buffer_image = Image::create();
buffer_image->set(Image::OSG_RGBA_PF, winWidth, winHeight);
colBuf->setImage(buffer_image);
//
// We must setup the internal image formats of the two render buffers accordingly.
//
colBuf->setInternalFormat(GL_RGBA);
dsBuf ->setInternalFormat(GL_DEPTH24_STENCIL8_EXT);
//
// we must inform the FBO about the actual used color render buffers.
//
fbo->editMFDrawBuffers()->push_back(GL_COLOR_ATTACHMENT0_EXT);
//
// The FBO takes responsibility of the render buffers. Notice, that the shared
// depth/stencil buffer is provided twice. As the depth render buffer and as the
// stencil render buffer.
//
fbo->setColorAttachment (colBuf, 0);
fbo->setDepthAttachment (dsBuf);
fbo->setStencilAttachment(dsBuf);
//
// Also the FBO must be sized correctly.
//
fbo->setWidth (winWidth );
fbo->setHeight(winHeight);
//
// In order to read the color buffer back next two statements are necessary.
//
fbo->setPostProcessOnDeactivate(true);
fbo->getColorAttachments(0)->setReadBack(true);
//
// We tile the final image and render each tile with the screen resolution
// into the FBO. The more tiles we use the bigger the resolution of the
// final image gets with respect to a provided measure of length.
//
typedef boost::tuple<TileCameraDecoratorUnrecPtr, bool, SimpleStageUnrecPtr, ViewportUnrecPtr> TupleT;
std::vector<TupleT> decorators;
decorators.resize(num_ports);
//
// Remember the stage viewports for later cleanup
//
std::stack<ViewportUnrecPtr> stage_viewports;
//
// Setup the tile camera decorators for each viewport of the window and
// disable the tile property of tileable viewport backgrounds.
//
for (size_t i = 0; i < num_ports; ++i) {
Viewport* vp = win->getPort(i);
TileCameraDecoratorUnrecPtr decorator = TileCameraDecorator::create();
decorator->setFullSize (width, height);
decorator->setDecoratee(vp->getCamera());
//.........这里部分代码省略.........
示例5: writeHiResScreenShot
//
// GrabForeground based solution
//
static void writeHiResScreenShot(
const char* name,
UInt32 width,
UInt32 height)
{
size_t num_ports = win->getMFPort()->size();
if (num_ports == 0)
return;
//
// calc image dimensions
//
UInt32 winWidth = win->getWidth();
UInt32 winHeight = win->getHeight();
if (width < winWidth ) width = winWidth;
if (height < winHeight) height = winHeight;
Real32 a = Real32(winWidth) / Real32(winHeight);
width = UInt32(a*height);
//
// output stream for writing the final image
//
std::ofstream stream(name, std::ios::binary);
if (stream.good() == false)
return;
//
// Tile image used for foreground grabbing
//
ImageUnrecPtr grab_image = Image::create();
GrabForegroundUnrecPtr grabber = GrabForeground::create();
grabber->setImage (grab_image);
grabber->setActive (true);
grabber->setAutoResize(false);
//
// We tile the final image and render each tile with the screen resolution
// into the window. The more tiles we use the bigger the resolution of the
// final image gets with respect to a provided measure of length.
//
typedef boost::tuple<TileCameraDecoratorUnrecPtr, bool> TupleT;
std::vector<TupleT> decorators;
decorators.resize(num_ports);
//
// Setup the tile camera decorators for each viewport of the window and
// disable the tile property of tileable viewport backgrounds.
//
for (size_t i = 0; i < num_ports; ++i) {
Viewport* vp = win->getPort(i);
TileCameraDecoratorUnrecPtr decorator = TileCameraDecorator::create();
decorator->setFullSize (width, height);
decorator->setDecoratee(vp->getCamera());
vp->setCamera(decorator);
bool bTiled = false;
TileableBackground* tbg = dynamic_cast<TileableBackground*>(vp->getBackground());
if (tbg) {
bTiled = tbg->getTile();
tbg->setTile(false);
}
//
// remember the decorator and the background tile prop setting
//
decorators[i] = boost::make_tuple(decorator, bTiled);
}
//
// Add the grabber to the forgrounds of the first viewport
//
Viewport* vp0 = win->getPort(0);
vp0->addForeground(grabber);
//
// We write the image in simple ppm format. This one starts with a description
// header which we output once on first write.
//
bool write_header = true;
//
// Calc the max y start position (width). We process the tiles from bottom
// up and from left tp right as determined by the image format.
//
UInt32 yPosLast = 0;
for (; yPosLast < height-winHeight; yPosLast += winHeight);
//
// Process from bottom to top
//
for (Int32 yPos = yPosLast; yPos >= 0; yPos -= winHeight)
//.........这里部分代码省略.........