本文整理汇总了C++中GAGenome::sexual方法的典型用法代码示例。如果您正苦于以下问题:C++ GAGenome::sexual方法的具体用法?C++ GAGenome::sexual怎么用?C++ GAGenome::sexual使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GAGenome
的用法示例。
在下文中一共展示了GAGenome::sexual方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: stats
// When we create a GA, we stuff the parameters with the basics that will be
// needed by most genetic algorithms - num generations, p convergence, etc.
GAGeneticAlgorithm::GAGeneticAlgorithm(const GAGenome& g) : stats(), params() {
pop = new GAPopulation(g, gaDefPopSize);
pop->geneticAlgorithm(*this);
ud = nullptr;
cf = GAGeneticAlgorithm::DEFAULT_TERMINATOR;
d_seed = gaDefSeed;
params.add(gaNseed, gaSNseed, GAParameter::INT, &d_seed);
minmax = gaDefMiniMaxi;
params.add(gaNminimaxi, gaSNminimaxi, GAParameter::INT, &minmax);
ngen = gaDefNumGen;
params.add(gaNnGenerations, gaSNnGenerations, GAParameter::INT, &ngen);
nconv = gaDefNConv; stats.nConvergence(nconv);
params.add(gaNnConvergence, gaSNnConvergence, GAParameter::INT, &nconv);
pconv = gaDefPConv;
params.add(gaNpConvergence, gaSNpConvergence, GAParameter::FLOAT, &pconv);
pcross = gaDefPCross;
params.add(gaNpCrossover, gaSNpCrossover, GAParameter::FLOAT, &pcross);
pmut = gaDefPMut;
params.add(gaNpMutation, gaSNpMutation, GAParameter::FLOAT, &pmut);
int psize = pop->size();
params.add(gaNpopulationSize, gaSNpopulationSize, GAParameter::INT, &psize);
stats.scoreFrequency(gaDefScoreFrequency1);
params.add(gaNscoreFrequency, gaSNscoreFrequency,
GAParameter::INT, &gaDefScoreFrequency1);
stats.flushFrequency(gaDefFlushFrequency);
params.add(gaNflushFrequency, gaSNflushFrequency,
GAParameter::INT, &gaDefFlushFrequency);
stats.recordDiversity(gaDefDivFlag);
params.add(gaNrecordDiversity, gaSNrecordDiversity,
GAParameter::INT, &gaDefDivFlag);
stats.scoreFilename(gaDefScoreFilename);
params.add(gaNscoreFilename, gaSNscoreFilename,
GAParameter::STRING, gaDefScoreFilename);
stats.selectScores(gaDefSelectScores);
params.add(gaNselectScores, gaSNselectScores,
GAParameter::INT, &gaDefSelectScores);
stats.nBestGenomes(g, gaDefNumBestGenomes);
params.add(gaNnBestGenomes, gaSNnBestGenomes,
GAParameter::INT, &gaDefNumBestGenomes);
scross = g.sexual();
across = g.asexual();
}