本文整理汇总了C++中FilterPtr::weight方法的典型用法代码示例。如果您正苦于以下问题:C++ FilterPtr::weight方法的具体用法?C++ FilterPtr::weight怎么用?C++ FilterPtr::weight使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FilterPtr
的用法示例。
在下文中一共展示了FilterPtr::weight方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeChannelData
IECore::ConstFloatVectorDataPtr Reformat::computeChannelData( const std::string &channelName, const Imath::V2i &tileOrigin, const Gaffer::Context *context, const ImagePlug *parent ) const
{
// Allocate the new tile
FloatVectorDataPtr outDataPtr = new FloatVectorData;
std::vector<float> &out = outDataPtr->writable();
out.resize( ImagePlug::tileSize() * ImagePlug::tileSize() );
// Create some useful variables...
Imath::V2f scaleFactor( scale() );
Imath::V2d inFormatOffset( inPlug()->formatPlug()->getValue().getDisplayWindow().min );
Imath::V2d outFormatOffset( formatPlug()->getValue().getDisplayWindow().min );
Imath::Box2i outTile( tileOrigin, Imath::V2i( tileOrigin.x + ImagePlug::tileSize() - 1, tileOrigin.y + ImagePlug::tileSize() - 1 ) );
Imath::Box2f inTile(
Imath::V2f(
double( outTile.min.x - outFormatOffset.x ) / scaleFactor.x + inFormatOffset.x,
double( outTile.min.y - outFormatOffset.y ) / scaleFactor.y + inFormatOffset.y
),
Imath::V2f(
double( outTile.max.x - outFormatOffset.x + 1. ) / scaleFactor.x + inFormatOffset.x - 1.,
double( outTile.max.y - outFormatOffset.y + 1. ) / scaleFactor.y + inFormatOffset.y - 1.
)
);
// Create our filter.
FilterPtr f = Filter::create( filterPlug()->getValue(), 1.f / scaleFactor.y );
// If we are filtering with a box filter then just don't bother filtering
// at all and just integer sample instead...
if ( static_cast<GafferImage::TypeId>( f->typeId() ) == GafferImage::BoxFilterTypeId )
{
Imath::Box2i sampleBox(
Imath::V2i( IECore::fastFloatFloor( inTile.min.x ), IECore::fastFloatCeil( inTile.min.y ) ),
Imath::V2i( IECore::fastFloatFloor( inTile.max.x ), IECore::fastFloatCeil( inTile.max.y ) )
);
Sampler sampler( inPlug(), channelName, sampleBox, f, Sampler::Clamp );
for ( int y = outTile.min.y, ty = 0; y <= outTile.max.y; ++y, ++ty )
{
for ( int x = outTile.min.x, tx = 0; x <= outTile.max.x; ++x, ++tx )
{
float value = sampler.sample( float( ( x + .5f - outFormatOffset.x ) / scaleFactor.x + inFormatOffset.x ), float( ( y + .5f - outFormatOffset.y ) / scaleFactor.y + inFormatOffset.y ) );
out[ tx + ImagePlug::tileSize() * ty ] = value;
}
}
return outDataPtr;
}
// Get the dimensions of our filter and create a box that we can use to define the bounds of our input.
int fHeight = f->width();
int sampleMinY = f->tap( inTile.min.y );
int sampleMaxY = f->tap( inTile.max.y );
f->setScale( 1.f / scaleFactor.x );
int sampleMinX = f->tap( inTile.min.x );
int sampleMaxX = f->tap( inTile.max.x );
int fWidth = f->width();
Imath::Box2i sampleBox(
Imath::V2i( sampleMinX, sampleMinY ),
Imath::V2i( sampleMaxX + fWidth, sampleMaxY + fHeight )
);
int sampleBoxWidth = sampleBox.size().x + 1;
int sampleBoxHeight = sampleBox.size().y + 1;
// Create a temporary buffer that we can write the result of the first pass to.
// We extend the buffer vertically as we will need additional information in the
// vertical squash (the second pass) to properly convolve the filter.
float buffer[ ImagePlug::tileSize() * sampleBoxHeight ];
// Create several buffers for each pixel in the output row (or column depending on the pass)
// into which we can place the indices for the pixels that are contribute to it's result and
// their weight.
// A buffer that holds a list of pixel contributions and their weights for every pixel in the output buffer.
// As it gets reused for both passes we make it large enough to hold both so that we don't have to resize it later.
std::vector<Contribution> contribution( ImagePlug::tileSize() * ( sampleBoxHeight > sampleBoxWidth ? sampleBoxHeight : sampleBoxWidth ) );
// The total number of pixels that contribute towards each pixel in th resulting image.
std::vector<int> coverageTotal( ImagePlug::tileSize() );
// The total weighted sum of contribution that each pixel in the output gets.
// This value is used to normalize the result.
std::vector<float> weightedSum( ImagePlug::tileSize() );
// Horizontal Pass
// Here we build a row buffer of contributing pixels and their weights for every pixel in the row.
int contributionIdx = 0;
for ( int i = 0; i < ImagePlug::tileSize(); ++i, contributionIdx += fWidth )
{
float center = ( outTile.min.x + i + 0.5 - outFormatOffset.x ) / scaleFactor.x + inFormatOffset.x;
int tap = f->tap( center );
int n = 0;
weightedSum[i] = 0.;
for ( int j = tap; j < tap+fWidth; ++j )
//.........这里部分代码省略.........