本文整理汇总了C++中FilterParameterSet::hasParameter方法的典型用法代码示例。如果您正苦于以下问题:C++ FilterParameterSet::hasParameter方法的具体用法?C++ FilterParameterSet::hasParameter怎么用?C++ FilterParameterSet::hasParameter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FilterParameterSet
的用法示例。
在下文中一共展示了FilterParameterSet::hasParameter方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: applyFilter
bool FilterFeatureAlignment::applyFilter(QAction *filter, MeshDocument &md, FilterParameterSet & par, vcg::CallBackPos * cb)
{
glLog=log; //assign log to a global variable. needed to write the log from everywhere in the code
//define needed typedef MeshType
typedef CMeshO MeshType;
//declare variables for parameters
int featureType, from, to, step, trials;
MeshModel *mFix, *mMov, *currMesh;
//read parameters
currMesh = md.mm(); //get current mesh from document
if(par.hasParameter("mFix")) mFix = par.getMesh("mFix"); else mFix = currMesh;
if(par.hasParameter("mMov")) mMov = par.getMesh("mMov"); else mMov = currMesh;
if(par.hasParameter("featureType")) featureType = par.getEnum("featureType"); else featureType = -1;
if(par.hasParameter("trials")) trials = par.getInt("trials"); else trials = 100;
if(par.hasParameter("from")) from = par.getInt("from"); else from = 1000;
if(par.hasParameter("to")) to = par.getInt("to"); else to = 5000;
if(par.hasParameter("step")) step = par.getInt("step"); else step = 1000;
switch(ID(filter))
{
case AF_COMPUTE_FEATURE:
{
switch(featureType){
case 0:{
typedef SmoothCurvatureFeature<MeshType, 6> FeatureType; //define needed typedef FeatureType
FeatureType::Parameters param;
FeatureType::SetupParameters(param);
return ComputeFeatureOperation<MeshType,FeatureType>(*currMesh, param, cb);
}
case 1:{
typedef APSSCurvatureFeature<MeshType, 3> FeatureType; //define needed typedef FeatureType
FeatureType::Parameters param;
FeatureType::SetupParameters(param);
return ComputeFeatureOperation<MeshType,FeatureType>(*currMesh, param, cb);
}
case 2:{
typedef FeatureRGB<MeshType, 3> FeatureType; //define needed typedef FeatureType
FeatureType::Parameters param;
FeatureType::SetupParameters(param);
return ComputeFeatureOperation<MeshType,FeatureType>(*currMesh, param, cb);
}
default: assert(0);
} //end switch(ftype)
assert(0);
} //end case AF_COMPUTE_FEATURE
case AF_EXTRACTION:
{
switch(featureType){
case 0:{
typedef SmoothCurvatureFeature<MeshType, 6> FeatureType; //define needed typedef FeatureType
typedef FeatureAlignment<MeshType, FeatureType> AlignerType; //define the Aligner class
AlignerType::Parameters alignerParam(mFix->cm, mMov->cm);
setAlignmentParameters<AlignerType>(mFix->cm, mMov->cm, par, alignerParam);
bool ok = ExtractionOperation<AlignerType>(*currMesh, alignerParam, cb);
return ok;
}
case 1:{
typedef FeatureRGB<MeshType, 3> FeatureType; //define needed typedef FeatureType
typedef FeatureAlignment<MeshType, FeatureType> AlignerType; //define the Aligner class
AlignerType::Parameters alignerParam(mFix->cm, mMov->cm);
setAlignmentParameters<AlignerType>(mFix->cm, mMov->cm, par, alignerParam);
bool ok = ExtractionOperation<AlignerType>(*currMesh, alignerParam, cb);
return ok;
}
default: assert(0);
} //end switch(ftype)
assert(0);
} //end case AF_EXTRACTION
case AF_MATCHING :
{
switch(featureType)
{
case 0:{
typedef SmoothCurvatureFeature<MeshType, 6> FeatureType; //define needed typedef FeatureType
typedef FeatureAlignment<MeshType, FeatureType> AlignerType; //define the Aligner class
typedef AlignerType::Result ResultType;
AlignerType::Parameters alignerParam(mFix->cm, mMov->cm);
setAlignmentParameters<AlignerType>(mFix->cm, mMov->cm, par, alignerParam);
ResultType res = MatchingOperation<AlignerType>(*mFix, *mMov, alignerParam, cb);
return logResult<AlignerType>(ID(filter), res, errorMessage);
}
case 1:{
typedef FeatureRGB<MeshType, 3> FeatureType; //define needed typedef FeatureType
typedef FeatureAlignment<MeshType, FeatureType> AlignerType; //define the Aligner class
typedef AlignerType::Result ResultType;
AlignerType::Parameters alignerParam(mFix->cm, mMov->cm);
setAlignmentParameters<AlignerType>(mFix->cm, mMov->cm, par, alignerParam);
ResultType res = MatchingOperation<AlignerType>(*mFix, *mMov, alignerParam, cb);
return logResult<AlignerType>(ID(filter), res, errorMessage);
}
default: assert(0);
} //end switch(ftype)
assert(0);
} //end case AF_MATCHING
case AF_RIGID_TRANSFORMATION :
{
switch(featureType)
{
//.........这里部分代码省略.........
示例2: setAlignmentParameters
void FilterFeatureAlignment::setAlignmentParameters(typename ALIGNER_TYPE::MeshType& mFix, typename ALIGNER_TYPE::MeshType& mMov, FilterParameterSet& par, typename ALIGNER_TYPE::Parameters& param)
{
typedef ALIGNER_TYPE AlignerType;
typedef typename AlignerType::MeshType MeshType;
if(par.hasParameter("samplingStrategy")) param.samplingStrategy = par.getEnum("samplingStrategy");
if(par.hasParameter("numMovFeatureSelected")) param.numMovFeatureSelected = math::Clamp(par.getInt("numMovFeatureSelected"),0,mMov.VertexNumber());
if(par.hasParameter("nBase")){ param.nBase = par.getInt("nBase"); if(param.nBase<4) param.nBase=4; }
if(par.hasParameter("k")){ param.k = par.getInt("k"); if(param.k<1) param.k=1; }
if(par.hasParameter("ransacIter")){ param.ransacIter = par.getInt("ransacIter"); if(param.ransacIter<0) param.ransacIter = 0;}
if(par.hasParameter("fullConsensusSamples")) param.fullConsensusSamples = math::Clamp(par.getInt("fullConsensusSamples"),1,mMov.VertexNumber());
if(par.hasParameter("overlap")) param.overlap = math::Clamp<float>(par.getFloat("overlap"),0.0f,100.0f);
if(par.hasParameter("consensusDist")) param.consensusDist = math::Clamp<float>(par.getFloat("consensusDist"),0.0f,100.0f);
if(par.hasParameter("pickPoints")) param.pickPoints = par.getBool("pickPoints");
if(par.hasParameter("normEq")) param.normalEqualization = par.getBool("normEq");
if(par.hasParameter("paint")) param.paint = par.getBool("paint");
}