本文整理汇总了C++中Face_handle::is_unbounded方法的典型用法代码示例。如果您正苦于以下问题:C++ Face_handle::is_unbounded方法的具体用法?C++ Face_handle::is_unbounded怎么用?C++ Face_handle::is_unbounded使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Face_handle
的用法示例。
在下文中一共展示了Face_handle::is_unbounded方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: setParameters
//.........这里部分代码省略.........
Algebraic_ft length = nt_traits.sqrt(delta_x * delta_x + delta_y * delta_y);
Algebraic_ft translation_x = factor * delta_y / length;
Algebraic_ft translation_y = - factor * delta_x / length;
Conic_point_2 point_1(source.x() + translation_x, source.y() + translation_y);
Conic_point_2 point_2(target.x() + translation_x, target.y() + translation_y);
Algebraic_ft a = - delta_y;
Algebraic_ft b = delta_x;
Algebraic_ft c = factor * length - (source.y() * target.x() - source.x() * target.y());
X_monotone_curve_2 x_monotone_curve(a, b, c, point_1, point_2);
insert(arrangement, x_monotone_curve);
}
else
{
// Displaces an arc.
Rational two(2);
Rational four(4);
Rational r = edge->curve().r();
Rational s = edge->curve().s();
Rational t = edge->curve().t();
Rational u = edge->curve().u();
Rational v = edge->curve().v();
Rational w = edge->curve().w();
Nt_traits nt_traits;
Rational x_center = - u / (two * r);
Rational y_center = - v / (two * r);
Rat_point_2 rat_center(x_center, y_center);
Conic_point_2 center(nt_traits.convert(x_center), nt_traits.convert(y_center));
Rational radius = Rational(radius_1) + two * Rational(radius_2);
Algebraic_ft coefficient = nt_traits.convert(radius / Rational(radius_2));
Conic_point_2 source_1 = edge->curve().source();
Algebraic_ft x_source_2 = center.x() + coefficient * (source_1.x() - center.x());
Algebraic_ft y_source_2 = center.y() + coefficient * (source_1.y() - center.y());
Conic_point_2 source_2(x_source_2, y_source_2);
Conic_point_2 target_1 = edge->curve().target();
Algebraic_ft x_target_2 = center.x() + coefficient * (target_1.x() - center.x());
Algebraic_ft y_target_2 = center.y() + coefficient * (target_1.y() - center.y());
Conic_point_2 target_2(x_target_2, y_target_2);
Rat_circle_2 circle(rat_center, radius * radius);
Conic_arc_2 conic_arc(circle, CGAL::COUNTERCLOCKWISE, source_2, target_2);
insert(arrangement, conic_arc);
}
}
// Add the critical curves of type II.
for (Edge_iterator edge = inset_2->edges_begin(); edge != inset_2->edges_end(); ++edge)
{
double x = CGAL::to_double(edge->curve().source().x());
double y = CGAL::to_double(edge->curve().source().y());
double radius = radius_1 + radius_2;
Rat_point_2 center(x, y);
Rat_circle_2 circle(center, radius * radius);
Conic_arc_2 conic_arc(circle);
insert(arrangement, conic_arc);
}
// Remove the curves which are not include in the inset.
Objects objects;
Face_handle face;
for (Edge_iterator edge = arrangement.edges_begin(); edge != arrangement.edges_end(); ++edge)
{
CGAL::zone(*inset_1, edge->curve(), std::back_inserter(objects));
for (Object_iterator object = objects.begin(); object != objects.end(); ++object)
{
if (assign(face, *object))
{
if (face->is_unbounded())
{
remove_edge(arrangement, edge);
break;
}
}
}
objects.clear();
}
// Print essential information on the standard input.
std::cout << "Arrangement:" << std::endl;
std::cout << " Number of vertices: " << arrangement.number_of_vertices() << std::endl;
std::cout << " Number of edges : " << arrangement.number_of_edges() << std::endl;
std::cout << " Number of face : " << arrangement.number_of_faces() << std::endl;
this->critical_curves.push_back(arrangement);
++inset_1;
++inset_2;
}
// Commit changes.
emit(criticalCurvesChanged());
return;
}