本文整理汇总了C++中FEProblem::getAuxiliarySystem方法的典型用法代码示例。如果您正苦于以下问题:C++ FEProblem::getAuxiliarySystem方法的具体用法?C++ FEProblem::getAuxiliarySystem怎么用?C++ FEProblem::getAuxiliarySystem使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FEProblem
的用法示例。
在下文中一共展示了FEProblem::getAuxiliarySystem方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mooseError
void
TransientMultiApp::setupApp(unsigned int i, Real /*time*/) // FIXME: Should we be passing time?
{
MooseApp * app = _apps[i];
Transient * ex = dynamic_cast<Transient *>(app->getExecutioner());
if (!ex)
mooseError("MultiApp " << _name << " is not using a Transient Executioner!");
// Get the FEProblem and OutputWarehouse for the current MultiApp
FEProblem * problem = appProblem(_first_local_app + i);
OutputWarehouse & output_warehouse = app->getOutputWarehouse();
// Update the file numbers for the outputs from the parent application
output_warehouse.setFileNumbers(_app.getOutputFileNumbers());
// Call initialization method of Executioner (Note, this preforms the output of the initial time step, if desired)
ex->init();
if (_interpolate_transfers)
{
AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
System & libmesh_aux_system = aux_system.system();
// We'll store a copy of the auxiliary system's solution at the old time in here
libmesh_aux_system.add_vector("transfer_old", false);
// This will be where we'll transfer the value to for the "target" time
libmesh_aux_system.add_vector("transfer", false);
}
ex->preExecute();
problem->advanceState();
_transient_executioners[i] = ex;
}
示例2:
ComputeNodalKernelBcsThread::ComputeNodalKernelBcsThread(FEProblem & fe_problem,
const MooseObjectWarehouse<NodalKernel> & nodal_kernels) :
ThreadedNodeLoop<ConstBndNodeRange, ConstBndNodeRange::const_iterator>(fe_problem),
_aux_sys(fe_problem.getAuxiliarySystem()),
_nodal_kernels(nodal_kernels),
_num_cached(0)
{
}
示例3:
ComputeNodalKernelJacobiansThread::ComputeNodalKernelJacobiansThread(FEProblem & fe_problem,
const MooseObjectWarehouse<NodalKernel> & nodal_kernels,
SparseMatrix<Number> & jacobian) :
ThreadedNodeLoop<ConstNodeRange, ConstNodeRange::const_iterator>(fe_problem),
_aux_sys(fe_problem.getAuxiliarySystem()),
_nodal_kernels(nodal_kernels),
_jacobian(jacobian),
_num_cached(0)
{
}
示例4: mooseError
void
TransientMultiApp::setupApp(unsigned int i, Real /*time*/, bool output_initial) // FIXME: Should we be passing time?
{
MooseApp * app = _apps[i];
Transient * ex = dynamic_cast<Transient *>(app->getExecutioner());
if (!ex)
mooseError("MultiApp " << _name << " is not using a Transient Executioner!");
// Get the FEProblem and OutputWarehouse for the current MultiApp
FEProblem * problem = appProblem(_first_local_app + i);
OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();
if (!output_initial)
{
ex->outputInitial(false);//\todo{Remove; handled within ex->init()}
output_warehouse.allowOutput(false);
}
// Set the file numbers of the i-th app to that of the parent app
output_warehouse.setFileNumbers(app->getOutputFileNumbers());
// Call initialization method of Executioner (Note, this preforms the output of the initial time step, if desired)
ex->init();
// Enable output after setup
output_warehouse.allowOutput(true);
if (_interpolate_transfers)
{
AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
System & libmesh_aux_system = aux_system.system();
// We'll store a copy of the auxiliary system's solution at the old time in here
libmesh_aux_system.add_vector("transfer_old", false);
// This will be where we'll transfer the value to for the "target" time
libmesh_aux_system.add_vector("transfer", false);
}
ex->preExecute();
problem->copyOldSolutions();
_transient_executioners[i] = ex;
if (_detect_steady_state || _tolerate_failure)
{
_apps[i]->getOutputWarehouse().allowOutput(false);
ex->allowOutput(false);
}
}
示例5: outputSystemInformationHelper
std::string
outputAuxiliarySystemInformation(FEProblem & problem)
{
return outputSystemInformationHelper(problem.getAuxiliarySystem().system());
}
示例6: aldit
void
TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance)
{
if (_sub_cycling && !auto_advance)
mooseError("TransientMultiApp with sub_cycling=true is not compatible with auto_advance=false");
if (_catch_up && !auto_advance)
mooseError("TransientMultiApp with catch_up=true is not compatible with auto_advance=false");
if (!_has_an_app)
return;
_auto_advance = auto_advance;
Moose::out << "Solving MultiApp " << _name << std::endl;
// "target_time" must always be in global time
target_time += _app.getGlobalTimeOffset();
MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);
int rank;
int ierr;
ierr = MPI_Comm_rank(_orig_comm, &rank); mooseCheckMPIErr(ierr);
for (unsigned int i=0; i<_my_num_apps; i++)
{
FEProblem * problem = appProblem(_first_local_app + i);
OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();
Transient * ex = _transient_executioners[i];
// The App might have a different local time from the rest of the problem
Real app_time_offset = _apps[i]->getGlobalTimeOffset();
if ((ex->getTime() + app_time_offset) + 2e-14 >= target_time) // Maybe this MultiApp was already solved
continue;
if (_sub_cycling)
{
Real time_old = ex->getTime() + app_time_offset;
if (_interpolate_transfers)
{
AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
System & libmesh_aux_system = aux_system.system();
NumericVector<Number> & solution = *libmesh_aux_system.solution;
NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");
solution.close();
// Save off the current auxiliary solution
transfer_old = solution;
transfer_old.close();
// Snag all of the local dof indices for all of these variables
AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars);
ConstElemRange & elem_range = *problem->mesh().getActiveLocalElementRange();
Threads::parallel_reduce(elem_range, aldit);
_transferred_dofs = aldit._all_dof_indices;
}
if (_output_sub_cycles)
output_warehouse.allowOutput(true);
else
output_warehouse.allowOutput(false);
ex->setTargetTime(target_time-app_time_offset);
// unsigned int failures = 0;
bool at_steady = false;
// Now do all of the solves we need
while(true)
{
if (_first != true)
ex->incrementStepOrReject();
_first = false;
if (!(!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time))
break;
ex->computeDT();
if (_interpolate_transfers)
{
// See what time this executioner is going to go to.
Real future_time = ex->getTime() + app_time_offset + ex->getDT();
// How far along we are towards the target time:
Real step_percent = (future_time - time_old) / (target_time - time_old);
Real one_minus_step_percent = 1.0 - step_percent;
// Do the interpolation for each variable that was transferred to
//.........这里部分代码省略.........