本文整理汇总了C++中FArrayBox::hiVect方法的典型用法代码示例。如果您正苦于以下问题:C++ FArrayBox::hiVect方法的具体用法?C++ FArrayBox::hiVect怎么用?C++ FArrayBox::hiVect使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FArrayBox
的用法示例。
在下文中一共展示了FArrayBox::hiVect方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeRefGradient
/* ************************************************************************* */
void PatchPluto::computeRefGradient(FArrayBox& gFab, FArrayBox& UFab, const Box& b)
/*!
* Compute numerical gradient of the solution in order to tag
* zones for refinement.
* The gradient is computed by standard finite differences using
*
* - REF_CRIT equal to 1 --> compute (normalized) gradient using 1st
* derivative of the solution;
* - REF_CRIT equal to 2 --> compute (normalized) gradient using 2nd
* derivative of the solution (default);
* This approach is based on Lohner (1987).
*
* Zones will be flagged for refinement whenever grad[k][j][i] exceeds
* the threshold value specified by the 'Refine_thresh' parameter read in
* pluto.ini.
*
* Derivatives are computed using the conserved variable U[REF_VAR]
* where REF_VAR is taken to be energy density (default).
* However, by setting REF_VAR = -1, you can provide your own
* physical variable through the function computeRefVar().
*
* \authors C. Zanni ([email protected])\n
* A. Mignone ([email protected])
* \date Oct 11, 2012
*************************************************************************** */
{
CH_assert(m_isDefined);
int nv, i, j, k;
double rp, rm, r, tp, tm;
double x, dqx_p, dqx_m, dqx, d2qx, den_x;
double y, dqy_p, dqy_m, dqy, d2qy, den_y;
double z, dqz_p, dqz_m, dqz, d2qz, den_z;
double gr1, gr2, eps = 0.01;
double ***UU[NVAR], ***q, ***grad;
RBox Ubox, Gbox;
rp = rm = r = 1.0;
tp = tm = 1.0;
/* -- check ref criterion -- */
#if REF_CRIT != 1 && REF_CRIT != 2
print ("! TagCells.cpp: Refinement criterion not valid\n");
QUIT_PLUTO(1);
#endif
/* -----------------------------------------------
The solution array U is defined on the box
[Uib, Uie] x [Ujb, Uje] x [Ukb, Uke], which
differs from that of gFab ([Gib,...Gke]),
typically one point larger in each direction.
----------------------------------------------- */
Ubox.jb = Ubox.je = Ubox.kb = Ubox.ke = 0;
Gbox.jb = Gbox.je = Gbox.kb = Gbox.ke = 0;
D_EXPAND(Ubox.ib = UFab.loVect()[IDIR]; Ubox.ie = UFab.hiVect()[IDIR]; ,
示例2: slope
void
CellBilinear::interp (const FArrayBox& crse,
int crse_comp,
FArrayBox& fine,
int fine_comp,
int ncomp,
const Box& fine_region,
const IntVect & ratio,
const Geometry& /*crse_geom*/,
const Geometry& /*fine_geom*/,
Array<BCRec>& /*bcr*/,
int actual_comp,
int actual_state)
{
BL_PROFILE("CellBilinear::interp()");
#if (BL_SPACEDIM == 3)
BoxLib::Error("interp: not implemented");
#endif
//
// Set up to call FORTRAN.
//
const int* clo = crse.box().loVect();
const int* chi = crse.box().hiVect();
const int* flo = fine.loVect();
const int* fhi = fine.hiVect();
const int* lo = fine_region.loVect();
const int* hi = fine_region.hiVect();
int num_slope = D_TERM(2,*2,*2)-1;
int len0 = crse.box().length(0);
int slp_len = num_slope*len0;
Array<Real> slope(slp_len);
int strp_len = len0*ratio[0];
Array<Real> strip(strp_len);
int strip_lo = ratio[0] * clo[0];
int strip_hi = ratio[0] * chi[0];
const Real* cdat = crse.dataPtr(crse_comp);
Real* fdat = fine.dataPtr(fine_comp);
const int* ratioV = ratio.getVect();
FORT_CBINTERP (cdat,ARLIM(clo),ARLIM(chi),ARLIM(clo),ARLIM(chi),
fdat,ARLIM(flo),ARLIM(fhi),ARLIM(lo),ARLIM(hi),
D_DECL(&ratioV[0],&ratioV[1],&ratioV[2]),&ncomp,
slope.dataPtr(),&num_slope,strip.dataPtr(),&strip_lo,&strip_hi,
&actual_comp,&actual_state);
}
示例3: computeRefGradient
/* ************************************************************************* */
void PatchPluto::computeRefGradient(FArrayBox& gFab, FArrayBox& UFab, const Box& b)
/*
*
* PURPOSE
*
* Tag cells for refinement by computing grad[k][j][i].
* By default a convex combination of the first and second
* derivative of the total energy density is used.
* alpha = 0 --> triggers refinement towards the 2nd derivative
* alpha = 1 --> triggers refinement towards the 1st derivative
*
*
*
*************************************************************************** */
{
CH_assert(m_isDefined);
int nv, i, j, k;
int Uib, Uie, Ujb=0, Uje=0, Ukb=0, Uke=0;
int Gib, Gie, Gjb=0, Gje=0, Gkb=0, Gke=0;
double rp, rm, r;
double x, dqx_p, dqx_m, d2qx, den_x;
double y, dqy_p, dqy_m, d2qy, den_y;
double z, dqz_p, dqz_m, d2qz, den_z;
double alpha, qref, gr1, gr2;
double eps = 0.01;
double ***UU[NVAR], ***q, ***grad;
double us[NVAR], vs[NVAR], mu;
static double **T;
rp = rm = r = 1.0;
/* -----------------------------------------------
The solution array U is defined on the box
[Uib, Uie] x [Ujb, Uje] x [Ukb, Uke], which
differs from that of gFab ([Gib,...Gke]),
typically one point larger in each direction.
----------------------------------------------- */
D_EXPAND(Uib = UFab.loVect()[IDIR]; Uie = UFab.hiVect()[IDIR]; ,
示例4: strip
void
NodeBilinear::interp (const FArrayBox& crse,
int crse_comp,
FArrayBox& fine,
int fine_comp,
int ncomp,
const Box& fine_region,
const IntVect& ratio,
const Geometry& /*crse_geom */,
const Geometry& /*fine_geom */,
Array<BCRec>& /*bcr*/,
int actual_comp,
int actual_state)
{
BL_PROFILE("NodeBilinear::interp()");
//
// Set up to call FORTRAN.
//
const int* clo = crse.box().loVect();
const int* chi = crse.box().hiVect();
const int* flo = fine.loVect();
const int* fhi = fine.hiVect();
const int* lo = fine_region.loVect();
const int* hi = fine_region.hiVect();
int num_slope = D_TERM(2,*2,*2)-1;
int len0 = crse.box().length(0);
int slp_len = num_slope*len0;
Array<Real> strip(slp_len);
const Real* cdat = crse.dataPtr(crse_comp);
Real* fdat = fine.dataPtr(fine_comp);
const int* ratioV = ratio.getVect();
FORT_NBINTERP (cdat,ARLIM(clo),ARLIM(chi),ARLIM(clo),ARLIM(chi),
fdat,ARLIM(flo),ARLIM(fhi),ARLIM(lo),ARLIM(hi),
D_DECL(&ratioV[0],&ratioV[1],&ratioV[2]),&ncomp,
strip.dataPtr(),&num_slope,&actual_comp,&actual_state);
}
示例5: cslope_bx
void
CellConservativeLinear::interp (const FArrayBox& crse,
int crse_comp,
FArrayBox& fine,
int fine_comp,
int ncomp,
const Box& fine_region,
const IntVect& ratio,
const Geometry& crse_geom,
const Geometry& fine_geom,
Array<BCRec>& bcr,
int actual_comp,
int actual_state)
{
BL_PROFILE("CellConservativeLinear::interp()");
BL_ASSERT(bcr.size() >= ncomp);
//
// Make box which is intersection of fine_region and domain of fine.
//
Box target_fine_region = fine_region & fine.box();
//
// crse_bx is coarsening of target_fine_region, grown by 1.
//
Box crse_bx = CoarseBox(target_fine_region,ratio);
//
// Slopes are needed only on coarsening of target_fine_region.
//
Box cslope_bx(crse_bx);
cslope_bx.grow(-1);
//
// Make a refinement of cslope_bx
//
Box fine_version_of_cslope_bx = BoxLib::refine(cslope_bx,ratio);
//
// Get coarse and fine edge-centered volume coordinates.
//
Array<Real> fvc[BL_SPACEDIM];
Array<Real> cvc[BL_SPACEDIM];
int dir;
for (dir = 0; dir < BL_SPACEDIM; dir++)
{
fine_geom.GetEdgeVolCoord(fvc[dir],fine_version_of_cslope_bx,dir);
crse_geom.GetEdgeVolCoord(cvc[dir],crse_bx,dir);
}
//
// alloc tmp space for slope calc.
//
// In ucc_slopes and lcc_slopes , there is a slight abuse of
// the number of compenents argument
// --> there is a slope for each component in each coordinate
// direction
//
FArrayBox ucc_slopes(cslope_bx,ncomp*BL_SPACEDIM);
FArrayBox lcc_slopes(cslope_bx,ncomp*BL_SPACEDIM);
FArrayBox slope_factors(cslope_bx,BL_SPACEDIM);
FArrayBox cmax(cslope_bx,ncomp);
FArrayBox cmin(cslope_bx,ncomp);
FArrayBox alpha(cslope_bx,ncomp);
Real* fdat = fine.dataPtr(fine_comp);
const Real* cdat = crse.dataPtr(crse_comp);
Real* ucc_xsldat = ucc_slopes.dataPtr(0);
Real* lcc_xsldat = lcc_slopes.dataPtr(0);
Real* xslfac_dat = slope_factors.dataPtr(0);
#if (BL_SPACEDIM>=2)
Real* ucc_ysldat = ucc_slopes.dataPtr(ncomp);
Real* lcc_ysldat = lcc_slopes.dataPtr(ncomp);
Real* yslfac_dat = slope_factors.dataPtr(1);
#endif
#if (BL_SPACEDIM==3)
Real* ucc_zsldat = ucc_slopes.dataPtr(2*ncomp);
Real* lcc_zsldat = lcc_slopes.dataPtr(2*ncomp);
Real* zslfac_dat = slope_factors.dataPtr(2);
#endif
const int* flo = fine.loVect();
const int* fhi = fine.hiVect();
const int* clo = crse.loVect();
const int* chi = crse.hiVect();
const int* fblo = target_fine_region.loVect();
const int* fbhi = target_fine_region.hiVect();
const int* csbhi = cslope_bx.hiVect();
const int* csblo = cslope_bx.loVect();
int lin_limit = (do_linear_limiting ? 1 : 0);
const int* cvcblo = crse_bx.loVect();
const int* fvcblo = fine_version_of_cslope_bx.loVect();
int slope_flag = 1;
int cvcbhi[BL_SPACEDIM];
int fvcbhi[BL_SPACEDIM];
for (dir=0; dir<BL_SPACEDIM; dir++)
{
cvcbhi[dir] = cvcblo[dir] + cvc[dir].size() - 1;
fvcbhi[dir] = fvcblo[dir] + fvc[dir].size() - 1;
}
D_TERM(Real* voffx = new Real[fvc[0].size()]; ,