当前位置: 首页>>代码示例>>C++>>正文


C++ Evaluator::Evaluate方法代码示例

本文整理汇总了C++中Evaluator::Evaluate方法的典型用法代码示例。如果您正苦于以下问题:C++ Evaluator::Evaluate方法的具体用法?C++ Evaluator::Evaluate怎么用?C++ Evaluator::Evaluate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Evaluator的用法示例。


在下文中一共展示了Evaluator::Evaluate方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: InitializeBlob

  void RecurrentNeuralNetworkPartOfSpeechTagger<F>::Train(
      const std::vector<TaggedSentence> &tagged_sentences,
      F learning_rate,
      F momentum,
      F lambda_1,
      F lambda_2,
      int iterations,
      Evaluator<F> &evaluator,
      const std::vector<TaggedSentence> &validation_sentences,
      const std::unordered_set<std::string> &training_vocabulary) {

    // InitializeBlob(uniform_symmetric, generator, &recurrent_state_input);
    InitializeBlob(uniform_symmetric, generator, &classify_weights);
    InitializeBlob(uniform_symmetric, generator, &combine_weights);

    std::uniform_int_distribution<int> uniform(0, tagged_sentences.size() - 1);

    constexpr auto minibatch_size = 100;

    std::cout << "Training... " << std::endl << std::endl;
    for (auto i = 0; i < iterations; ++i) {
      std::cout << "Evaluating on validation data... ";
      std::cout.flush();
      auto validation_report = evaluator.Evaluate(
          *this, validation_sentences, training_vocabulary);
      std::cout << "Done." << std::endl;
      std::cout << validation_report << std::endl<< std::endl;
      std::cout << "Starting iteration " << i << "... " << std::endl << std::endl;
      
      for (auto j = 0; j < tagged_sentences.size(); ++j) {
        // auto u = uniform(generator);
        auto u = j;
        ForwardBackwardCpu(tagged_sentences.at(u));

        classify_weights.ClipGradient(tagged_sentences.at(u).size());
        classify_bias.ClipGradient(tagged_sentences.at(u).size());
        combine_weights.ClipGradient(tagged_sentences.at(u).size());
        combine_bias.ClipGradient(tagged_sentences.at(u).size());

        classify_weights.L1Regularize(lambda_1);
        classify_bias.L1Regularize(lambda_1);
        combine_weights.L1Regularize(lambda_1);
        combine_bias.L1Regularize(lambda_1);

        auto magnitude = sqrt(classify_weights.values.SquareMagnitude()
            + classify_weights.values.SquareMagnitude()
            + combine_weights.values.SquareMagnitude()
            + combine_bias.values.SquareMagnitude());

        classify_weights.L2Regularize(lambda_2, magnitude);
        classify_bias.L2Regularize(lambda_2, magnitude);
        combine_weights.L2Regularize(lambda_2, magnitude);
        combine_bias.L2Regularize(lambda_2, magnitude);

        // auto difference_magnitude = sqrt(classify_weights.differences.SquareMagnitude()
        //     + classify_weights.differences.SquareMagnitude()
        //     + combine_weights.differences.SquareMagnitude()
        //     + combine_bias.differences.SquareMagnitude());

        // classify_weights.ClipGradient(difference_magnitude);
        // classify_bias.ClipGradient(difference_magnitude);
        // combine_weights.ClipGradient(difference_magnitude);
        // combine_bias.ClipGradient(difference_magnitude);

        // const auto modified_learning_rate = learning_rate * pow(F(0.1), i / 2.0);
        const auto modified_learning_rate = learning_rate;

        classify_weights.UpdateMomentum(modified_learning_rate, momentum);
        classify_bias.UpdateMomentum(modified_learning_rate, momentum);
        combine_weights.UpdateMomentum(modified_learning_rate, momentum);
        combine_bias.UpdateMomentum(modified_learning_rate, momentum);

        constexpr auto kAdaDeltaMemory = F(0.95);

        // classify_weights.UpdateAdaDelta(modified_learning_rate, kAdaDeltaMemory);
        // classify_bias.UpdateAdaDelta(modified_learning_rate, kAdaDeltaMemory);
        // combine_weights.UpdateAdaDelta(modified_learning_rate, kAdaDeltaMemory);
        // combine_bias.UpdateAdaDelta(modified_learning_rate, kAdaDeltaMemory);

        // classify_weights.UpdateAdaGrad(modified_learning_rate);
        // classify_bias.UpdateAdaGrad(modified_learning_rate);
        // combine_weights.UpdateAdaGrad(modified_learning_rate);
        // combine_bias.UpdateAdaGrad(modified_learning_rate);

        classify_weights.differences.Reset();
        classify_bias.differences.Reset();
        combine_weights.differences.Reset();
        combine_bias.differences.Reset();

        // if (j > 0 && j % 100 == 0) {
        //   std::cout << "Finished " << j << " sentences." << std::endl;
        // }

        if (j > 0 && j + 1 < tagged_sentences.size() && j % 1000 == 0) {
          // std::cout << std::endl << "Evaluating on validation data... ";
          // std::cout.flush();
          auto validation_report = evaluator.Evaluate(
              *this, validation_sentences, training_vocabulary);
          std::cout << "Done." << std::endl;
          std::cout << validation_report << std::endl << std::endl;
//.........这里部分代码省略.........
开发者ID:,项目名称:,代码行数:101,代码来源:


注:本文中的Evaluator::Evaluate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。