当前位置: 首页>>代码示例>>C++>>正文


C++ ErrorVector::size方法代码示例

本文整理汇总了C++中ErrorVector::size方法的典型用法代码示例。如果您正苦于以下问题:C++ ErrorVector::size方法的具体用法?C++ ErrorVector::size怎么用?C++ ErrorVector::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ErrorVector的用法示例。


在下文中一共展示了ErrorVector::size方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: flag_elements_by_mean_stddev

void MeshRefinement::flag_elements_by_mean_stddev (const ErrorVector & error_per_cell,
                                                   const Real refine_frac,
                                                   const Real coarsen_frac,
                                                   const unsigned int max_l)
{
  // The function arguments are currently just there for
  // backwards_compatibility
  if (!_use_member_parameters)
    {
      // If the user used non-default parameters, lets warn
      // that they're deprecated
      if (refine_frac != 0.3 ||
          coarsen_frac != 0.0 ||
          max_l != libMesh::invalid_uint)
        libmesh_deprecated();

      _refine_fraction = refine_frac;
      _coarsen_fraction = coarsen_frac;
      _max_h_level = max_l;
    }

  // Get the mean value from the error vector
  const Real mean = error_per_cell.mean();

  // Get the standard deviation.  This equals the
  // square-root of the variance
  const Real stddev = std::sqrt (error_per_cell.variance());

  // Check for valid fractions
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // The refine and coarsen cutoff
  const Real refine_cutoff  =  mean + _refine_fraction  * stddev;
  const Real coarsen_cutoff =  std::max(mean - _coarsen_fraction * stddev, 0.);

  // Loop over the elements and flag them for coarsening or
  // refinement based on the element error
  for (auto & elem : _mesh.active_element_ptr_range())
    {
      const dof_id_type id  = elem->id();

      libmesh_assert_less (id, error_per_cell.size());

      const ErrorVectorReal elem_error = error_per_cell[id];

      // Possibly flag the element for coarsening ...
      if (elem_error <= coarsen_cutoff)
        elem->set_refinement_flag(Elem::COARSEN);

      // ... or refinement
      if ((elem_error >= refine_cutoff) && (elem->level() < _max_h_level))
        elem->set_refinement_flag(Elem::REFINE);
    }
}
开发者ID:giorgiobornia,项目名称:libmesh,代码行数:57,代码来源:mesh_refinement_flagging.C

示例2: estimate_errors

void ErrorEstimator::estimate_errors(const EquationSystems & equation_systems,
                                     ErrorVector & error_per_cell,
                                     const std::map<const System *, SystemNorm> & error_norms,
                                     const std::map<const System *, const NumericVector<Number> *> * solution_vectors,
                                     bool estimate_parent_error)
{
  SystemNorm old_error_norm = this->error_norm;

  // Sum the error values from each system
  for (unsigned int s = 0; s != equation_systems.n_systems(); ++s)
    {
      ErrorVector system_error_per_cell;
      const System & sys = equation_systems.get_system(s);
      if (error_norms.find(&sys) == error_norms.end())
        this->error_norm = old_error_norm;
      else
        this->error_norm = error_norms.find(&sys)->second;

      const NumericVector<Number> * solution_vector = nullptr;
      if (solution_vectors &&
          solution_vectors->find(&sys) != solution_vectors->end())
        solution_vector = solution_vectors->find(&sys)->second;

      this->estimate_error(sys, system_error_per_cell,
                           solution_vector, estimate_parent_error);

      if (s)
        {
          libmesh_assert_equal_to (error_per_cell.size(), system_error_per_cell.size());
          for (std::size_t i=0; i != error_per_cell.size(); ++i)
            error_per_cell[i] += system_error_per_cell[i];
        }
      else
        error_per_cell = system_error_per_cell;
    }

  // Restore our old state before returning
  this->error_norm = old_error_norm;
}
开发者ID:giorgiobornia,项目名称:libmesh,代码行数:39,代码来源:error_estimator.C

示例3: estimate_error

void JumpErrorEstimator::estimate_error (const System& system,
                                         ErrorVector& error_per_cell,
                                         const NumericVector<Number>* solution_vector,
                                         bool estimate_parent_error)
{
  START_LOG("estimate_error()", "JumpErrorEstimator");
  /*

    Conventions for assigning the direction of the normal:

    - e & f are global element ids

    Case (1.) Elements are at the same level, e<f
    Compute the flux jump on the face and
    add it as a contribution to error_per_cell[e]
    and error_per_cell[f]

    ----------------------
    |           |          |
    |           |    f     |
    |           |          |
    |    e      |---> n    |
    |           |          |
    |           |          |
    ----------------------


    Case (2.) The neighbor is at a higher level.
    Compute the flux jump on e's face and
    add it as a contribution to error_per_cell[e]
    and error_per_cell[f]

    ----------------------
    |     |     |          |
    |     |  e  |---> n    |
    |     |     |          |
    |-----------|    f     |
    |     |     |          |
    |     |     |          |
    |     |     |          |
    ----------------------
  */

  // The current mesh
  const MeshBase& mesh = system.get_mesh();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap& dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Declare a vector of floats which is as long as
  // error_per_cell above, and fill with zeros.  This vector will be
  // used to keep track of the number of edges (faces) on each active
  // element which are either:
  // 1) an internal edge
  // 2) an edge on a Neumann boundary for which a boundary condition
  //    function has been specified.
  // The error estimator can be scaled by the number of flux edges (faces)
  // which the element actually has to obtain a more uniform measure
  // of the error.  Use floats instead of ints since in case 2 (above)
  // f gets 1/2 of a flux face contribution from each of his
  // neighbors
  std::vector<float> n_flux_faces;
  if (scale_by_n_flux_faces)
    n_flux_faces.resize(error_per_cell.size(), 0);

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  fine_context.reset(new FEMContext(system));
  coarse_context.reset(new FEMContext(system));

  // Loop over all the variables we've been requested to find jumps in, to
  // pre-request
  for (var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // FIXME: Need to generalize this to vector-valued elements. [PB]
      FEBase* side_fe = NULL;

      const std::set<unsigned char>& elem_dims =
        fine_context->elem_dimensions();

//.........这里部分代码省略.........
开发者ID:GENGCHN,项目名称:libmesh,代码行数:101,代码来源:jump_error_estimator.C

示例4: estimate_error

void JumpErrorEstimator::estimate_error (const System& system,
					 ErrorVector& error_per_cell,
					 const NumericVector<Number>* solution_vector,
					 bool estimate_parent_error)
{
  START_LOG("estimate_error()", "JumpErrorEstimator");
  /*

  Conventions for assigning the direction of the normal:

  - e & f are global element ids

  Case (1.) Elements are at the same level, e<f
            Compute the flux jump on the face and
	    add it as a contribution to error_per_cell[e]
	    and error_per_cell[f]

                   ----------------------
		  |           |          |
		  |           |    f     |
		  |           |          |
		  |    e      |---> n    |
		  |           |          |
		  |           |          |
                   ----------------------


   Case (2.) The neighbor is at a higher level.
             Compute the flux jump on e's face and
	     add it as a contribution to error_per_cell[e]
	     and error_per_cell[f]

                   ----------------------
		  |     |     |          |
		  |     |  e  |---> n    |
		  |     |     |          |
		  |-----------|    f     |
		  |     |     |          |
		  |     |     |          |
		  |     |     |          |
                   ----------------------
  */

  // The current mesh
  const MeshBase& mesh = system.get_mesh();

  // The dimensionality of the mesh
  const unsigned int dim = mesh.mesh_dimension();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap& dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Declare a vector of floats which is as long as
  // error_per_cell above, and fill with zeros.  This vector will be
  // used to keep track of the number of edges (faces) on each active
  // element which are either:
  // 1) an internal edge
  // 2) an edge on a Neumann boundary for which a boundary condition
  //    function has been specified.
  // The error estimator can be scaled by the number of flux edges (faces)
  // which the element actually has to obtain a more uniform measure
  // of the error.  Use floats instead of ints since in case 2 (above)
  // f gets 1/2 of a flux face contribution from each of his
  // neighbors
  std::vector<float> n_flux_faces (error_per_cell.size());

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  // Loop over all the variables in the system
  for (var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // The type of finite element to use for this variable
      const FEType& fe_type = dof_map.variable_type (var);

      // Finite element objects for the same face from
      // different sides
      fe_fine = FEBase::build (dim, fe_type);
      fe_coarse = FEBase::build (dim, fe_type);

      // Build an appropriate Gaussian quadrature rule
//.........这里部分代码省略.........
开发者ID:guyer,项目名称:libmesh,代码行数:101,代码来源:jump_error_estimator.C

示例5: estimate_error

void ExactErrorEstimator::estimate_error (const System & system,
                                          ErrorVector & error_per_cell,
                                          const NumericVector<Number> * solution_vector,
                                          bool estimate_parent_error)
{
  // Ignore the fact that this variable is unused when !LIBMESH_ENABLE_AMR
  libmesh_ignore(estimate_parent_error);

  // The current mesh
  const MeshBase & mesh = system.get_mesh();

  // The dimensionality of the mesh
  const unsigned int dim = mesh.mesh_dimension();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap & dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *>(solution_vector);
      System & sys = const_cast<System &>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  // Loop over all the variables in the system
  for (unsigned int var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // The (string) name of this variable
      const std::string & var_name = system.variable_name(var);

      // The type of finite element to use for this variable
      const FEType & fe_type = dof_map.variable_type (var);

      UniquePtr<FEBase> fe (FEBase::build (dim, fe_type));

      // Build an appropriate Gaussian quadrature rule
      UniquePtr<QBase> qrule =
        fe_type.default_quadrature_rule (dim,
                                         _extra_order);

      fe->attach_quadrature_rule (qrule.get());

      // Prepare a global solution and a MeshFunction of the fine system if we need one
      UniquePtr<MeshFunction> fine_values;
      UniquePtr<NumericVector<Number> > fine_soln = NumericVector<Number>::build(system.comm());
      if (_equation_systems_fine)
        {
          const System & fine_system = _equation_systems_fine->get_system(system.name());

          std::vector<Number> global_soln;
          // FIXME - we're assuming that the fine system solution gets
          // used even when a different vector is used for the coarse
          // system
          fine_system.update_global_solution(global_soln);
          fine_soln->init
            (cast_int<numeric_index_type>(global_soln.size()), true,
             SERIAL);
          (*fine_soln) = global_soln;

          fine_values = UniquePtr<MeshFunction>
            (new MeshFunction(*_equation_systems_fine,
                              *fine_soln,
                              fine_system.get_dof_map(),
                              fine_system.variable_number(var_name)));
          fine_values->init();
        } else {
        // Initialize functors if we're using them
        for (unsigned int i=0; i != _exact_values.size(); ++i)
          if (_exact_values[i])
            _exact_values[i]->init();

        for (unsigned int i=0; i != _exact_derivs.size(); ++i)
          if (_exact_derivs[i])
            _exact_derivs[i]->init();

        for (unsigned int i=0; i != _exact_hessians.size(); ++i)
          if (_exact_hessians[i])
            _exact_hessians[i]->init();
      }

      // Request the data we'll need to compute with
      fe->get_JxW();
      fe->get_phi();
      fe->get_dphi();
#ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
//.........这里部分代码省略.........
开发者ID:borisboutkov,项目名称:libmesh,代码行数:101,代码来源:exact_error_estimator.C

示例6: estimate_error

void AdjointResidualErrorEstimator::estimate_error (const System & _system,
                                                    ErrorVector & error_per_cell,
                                                    const NumericVector<Number> * solution_vector,
                                                    bool estimate_parent_error)
{
  LOG_SCOPE("estimate_error()", "AdjointResidualErrorEstimator");

  // The current mesh
  const MeshBase & mesh = _system.get_mesh();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Get the number of variables in the system
  unsigned int n_vars = _system.n_vars();

  // We need to make a map of the pointer to the solution vector
  std::map<const System *, const NumericVector<Number> *>solutionvecs;
  solutionvecs[&_system] = _system.solution.get();

  // Solve the dual problem if we have to
  if (!_system.is_adjoint_already_solved())
    {
      // FIXME - we'll need to change a lot of APIs to make this trick
      // work with a const System...
      System &  system = const_cast<System &>(_system);
      system.adjoint_solve(_qoi_set);
    }

  // Flag to check whether we have not been asked to weight the variable error contributions in any specific manner
  bool error_norm_is_identity = error_norm.is_identity();

  // Create an ErrorMap/ErrorVector to store the primal, dual and total_dual variable errors
  ErrorMap primal_errors_per_cell;
  ErrorMap dual_errors_per_cell;
  ErrorMap total_dual_errors_per_cell;
  // Allocate ErrorVectors to this map if we're going to use it
  if (!error_norm_is_identity)
    for(unsigned int v = 0; v < n_vars; v++)
      {
        primal_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
        dual_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
        total_dual_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
      }
  ErrorVector primal_error_per_cell;
  ErrorVector dual_error_per_cell;
  ErrorVector total_dual_error_per_cell;

  // Have we been asked to weight the variable error contributions in any specific manner
  if(!error_norm_is_identity) // If we do
    {
      // Estimate the primal problem error for each variable
      _primal_error_estimator->estimate_errors
        (_system.get_equation_systems(), primal_errors_per_cell, &solutionvecs, estimate_parent_error);
    }
  else // If not
    {
      // Just get the combined error estimate
      _primal_error_estimator->estimate_error
        (_system, primal_error_per_cell, solution_vector, estimate_parent_error);
    }

  // Sum and weight the dual error estimate based on our QoISet
  for (unsigned int i = 0; i != _system.qoi.size(); ++i)
    {
      if (_qoi_set.has_index(i))
        {
          // Get the weight for the current QoI
          Real error_weight = _qoi_set.weight(i);

          // We need to make a map of the pointer to the adjoint solution vector
          std::map<const System *, const NumericVector<Number> *>adjointsolutionvecs;
          adjointsolutionvecs[&_system] = &_system.get_adjoint_solution(i);

          // Have we been asked to weight the variable error contributions in any specific manner
          if(!error_norm_is_identity) // If we have
            {
              _dual_error_estimator->estimate_errors
                (_system.get_equation_systems(), dual_errors_per_cell, &adjointsolutionvecs,
                 estimate_parent_error);
            }
          else // If not
            {
              // Just get the combined error estimate
              _dual_error_estimator->estimate_error
                (_system, dual_error_per_cell, &(_system.get_adjoint_solution(i)), estimate_parent_error);
            }

          std::size_t error_size;

          // Get the size of the first ErrorMap vector; this will give us the number of elements
          if(!error_norm_is_identity) // If in non default weights case
            {
              error_size = dual_errors_per_cell[std::make_pair(&_system, 0)]->size();
            }
          else // If in the standard default weights case
            {
              error_size = dual_error_per_cell.size();
//.........这里部分代码省略.........
开发者ID:borisboutkov,项目名称:libmesh,代码行数:101,代码来源:adjoint_residual_error_estimator.C

示例7: flag_elements_by_error_fraction

//-----------------------------------------------------------------
// Mesh refinement methods
void MeshRefinement::flag_elements_by_error_fraction (const ErrorVector& error_per_cell,
						      const Real refine_frac,
						      const Real coarsen_frac,
						      const unsigned int max_l)
{
  parallel_only();

  // The function arguments are currently just there for
  // backwards_compatibility
  if (!_use_member_parameters)
  {
    // If the user used non-default parameters, lets warn
    // that they're deprecated
    if (refine_frac != 0.3 ||
	coarsen_frac != 0.0 ||
	max_l != libMesh::invalid_uint)
      libmesh_deprecated();

    _refine_fraction = refine_frac;
    _coarsen_fraction = coarsen_frac;
    _max_h_level = max_l;
  }

  // Check for valid fractions..
  // The fraction values must be in [0,1]
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // Clean up the refinement flags.  These could be left
  // over from previous refinement steps.
  this->clean_refinement_flags();

  // We're getting the minimum and maximum error values
  // for the ACTIVE elements
  Real error_min = 1.e30;
  Real error_max = 0.;

  // And, if necessary, for their parents
  Real parent_error_min = 1.e30;
  Real parent_error_max = 0.;

  // Prepare another error vector if we need to sum parent errors
  ErrorVector error_per_parent;
  if (_coarsen_by_parents)
  {
    create_parent_error_vector(error_per_cell,
			       error_per_parent,
			       parent_error_min,
			       parent_error_max);
  }

  // We need to loop over all active elements to find the minimum
  MeshBase::element_iterator       el_it  =
    _mesh.active_local_elements_begin();
  const MeshBase::element_iterator el_end =
    _mesh.active_local_elements_end();

  for (; el_it != el_end; ++el_it)
  {
    const unsigned int id  = (*el_it)->id();
    libmesh_assert_less (id, error_per_cell.size());

    error_max = std::max (error_max, error_per_cell[id]);
    error_min = std::min (error_min, error_per_cell[id]);
  }
  CommWorld.max(error_max);
  CommWorld.min(error_min);

  // Compute the cutoff values for coarsening and refinement
  const Real error_delta = (error_max - error_min);
  const Real parent_error_delta = parent_error_max - parent_error_min;

  const Real refine_cutoff  = (1.- _refine_fraction)*error_max;
  const Real coarsen_cutoff = _coarsen_fraction*error_delta + error_min;
  const Real parent_cutoff = _coarsen_fraction*parent_error_delta + error_min;

//   // Print information about the error
//   libMesh::out << " Error Information:"                     << std::endl
// 	    << " ------------------"                     << std::endl
// 	    << "   min:              " << error_min      << std::endl
// 	    << "   max:              " << error_max      << std::endl
// 	    << "   delta:            " << error_delta    << std::endl
// 	    << "     refine_cutoff:  " << refine_cutoff  << std::endl
// 	    << "     coarsen_cutoff: " << coarsen_cutoff << std::endl;



  // Loop over the elements and flag them for coarsening or
  // refinement based on the element error

  MeshBase::element_iterator       e_it  =
    _mesh.active_elements_begin();
  const MeshBase::element_iterator e_end =
    _mesh.active_elements_end();
  for (; e_it != e_end; ++e_it)
  {
//.........这里部分代码省略.........
开发者ID:paulovieira,项目名称:libmesh,代码行数:101,代码来源:mesh_refinement_flagging.C

示例8: flag_elements_by_nelem_target

bool MeshRefinement::flag_elements_by_nelem_target (const ErrorVector& error_per_cell)
{
  parallel_only();

  // Check for valid fractions..
  // The fraction values must be in [0,1]
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // This function is currently only coded to work when coarsening by
  // parents - it's too hard to guess how many coarsenings will be
  // performed otherwise.
  libmesh_assert (_coarsen_by_parents);

  // The number of active elements in the mesh - hopefully less than
  // 2 billion on 32 bit machines
  const unsigned int n_active_elem  = _mesh.n_active_elem();

  // The maximum number of active elements to flag for coarsening
  const unsigned int max_elem_coarsen =
    static_cast<unsigned int>(_coarsen_fraction * n_active_elem) + 1;

  // The maximum number of elements to flag for refinement
  const unsigned int max_elem_refine  =
    static_cast<unsigned int>(_refine_fraction  * n_active_elem) + 1;

  // Clean up the refinement flags.  These could be left
  // over from previous refinement steps.
  this->clean_refinement_flags();

  // The target number of elements to add or remove
  const int n_elem_new = _nelem_target - n_active_elem;

  // Create an vector with active element errors and ids,
  // sorted by highest errors first
  const unsigned int max_elem_id = _mesh.max_elem_id();
  std::vector<std::pair<float, unsigned int> > sorted_error;

  sorted_error.reserve (n_active_elem);

  // On a ParallelMesh, we need to communicate to know which remote ids
  // correspond to active elements.
  {
    std::vector<bool> is_active(max_elem_id, false);

    MeshBase::element_iterator       elem_it  = _mesh.active_local_elements_begin();
    const MeshBase::element_iterator elem_end = _mesh.active_local_elements_end();
    for (; elem_it != elem_end; ++elem_it)
      {
        const unsigned int eid = (*elem_it)->id();
        is_active[eid] = true;
        libmesh_assert_less (eid, error_per_cell.size());
        sorted_error.push_back
          (std::make_pair(error_per_cell[eid], eid));
      }

    CommWorld.max(is_active);

    CommWorld.allgather(sorted_error);
  }

  // Default sort works since pairs are sorted lexicographically
  std::sort (sorted_error.begin(), sorted_error.end());
  std::reverse (sorted_error.begin(), sorted_error.end());

  // Create a sorted error vector with coarsenable parent elements
  // only, sorted by lowest errors first
  ErrorVector error_per_parent;
  std::vector<std::pair<float, unsigned int> > sorted_parent_error;
  Real parent_error_min, parent_error_max;

  create_parent_error_vector(error_per_cell,
                             error_per_parent,
                             parent_error_min,
                             parent_error_max);

  // create_parent_error_vector sets values for non-parents and
  // non-coarsenable parents to -1.  Get rid of them.
  for (unsigned int i=0; i != error_per_parent.size(); ++i)
    if (error_per_parent[i] != -1)
      sorted_parent_error.push_back(std::make_pair(error_per_parent[i], i));

  std::sort (sorted_parent_error.begin(), sorted_parent_error.end());

  // Keep track of how many elements we plan to coarsen & refine
  unsigned int coarsen_count = 0;
  unsigned int refine_count = 0;

  const unsigned int dim = _mesh.mesh_dimension();
  unsigned int twotodim = 1;
  for (unsigned int i=0; i!=dim; ++i)
    twotodim *= 2;

  // First, let's try to get our element count to target_nelem
  if (n_elem_new >= 0)
  {
    // Every element refinement creates at least
    // 2^dim-1 new elements
//.........这里部分代码省略.........
开发者ID:paulovieira,项目名称:libmesh,代码行数:101,代码来源:mesh_refinement_flagging.C


注:本文中的ErrorVector::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。