当前位置: 首页>>代码示例>>C++>>正文


C++ EncryptedArray::dimension方法代码示例

本文整理汇总了C++中EncryptedArray::dimension方法的典型用法代码示例。如果您正苦于以下问题:C++ EncryptedArray::dimension方法的具体用法?C++ EncryptedArray::dimension怎么用?C++ EncryptedArray::dimension使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在EncryptedArray的用法示例。


在下文中一共展示了EncryptedArray::dimension方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: replicate0

void replicate0(const EncryptedArray& ea, Ctxt& ctxt, long pos)
{
  long dim = ea.dimension();

  for (long d = 0; d < dim; d++) {
    if (!ea.nativeDimension(d)) {
      long shamt = -ea.coordinate(d, pos);
      ea.rotate1D(ctxt, d, shamt, true); // "don't care"
    }

    Ctxt ctxt_orig = ctxt; 

    long sz = ea.sizeOfDimension(d);
    long k = NumBits(sz);
    long e = 1;

    // now process bits k-2 down to 0
    for (long j = k-2; j >= 0; j--) {
      // e -> 2*e
      Ctxt tmp = ctxt;
      ea.rotate1D(tmp, d, e, true); // "don't care"
      ctxt += tmp;
      e = 2*e;
      
      long b = bit(sz, j); // bit j of sz
      // e -> e+b
      if (b) {
        ea.rotate1D(ctxt, d, 1, true); // "don't care"
        ctxt += ctxt_orig;
        e++;
      }
    }
  }
}
开发者ID:alexandredantas,项目名称:HElib,代码行数:34,代码来源:replicate.cpp

示例2: SelectRangeDim

// selects range of slots [lo..hi) in dimension d
static
void SelectRangeDim(const EncryptedArray& ea, ZZX& mask, long lo, long hi,
                    long d)
{
  long nSlots = ea.size();

  assert(d >= 0 && d < ea.dimension());
  assert(lo >= 0 && lo <= hi && hi <= ea.sizeOfDimension(d));

  vector<long> maskArray;
  maskArray.resize(nSlots);
  for (long i = 0; i < nSlots; i++) {
    long c = ea.coordinate(d, i);
    if (c >= lo && c < hi) 
      maskArray[i] = 1;
    else
      maskArray[i] = 0;
  }
  
  ea.encode(mask, maskArray);
}
开发者ID:alexandredantas,项目名称:HElib,代码行数:22,代码来源:replicate.cpp

示例3: replicateAllNextDim

void replicateAllNextDim(const EncryptedArray& ea, const Ctxt& ctxt,
                         long d, long dimProd, long recBound,
                         RepAuxDim& repAux, ReplicateHandler *handler)

{
  assert(d >= 0);

  // If already fully replicated (or we need to stop early), call the handler
  if (d >= ea.dimension() || handler->earlyStop(d,/*k=*/-1,dimProd)) {
    handler->handle(ctxt);
    return;
  }
  
  long dSize = ea.sizeOfDimension(d);
  dimProd *= dSize; // product of all dimensions including this one

  long n = GreatestPowerOfTwo(dSize); // 2^n <= dSize
  long k = n;

  // We replicate 2^k-size blocks along this dimension, then call the
  // recursive procedure to handle the smaller subblocks. Consider for
  // example a 2D 5x2 cube, so the original slots are
  //
  //    ( s0 s2 s4 s6 s8 )
  //    ( s1 s3 s5 s7 s9 )
  //
  // Say that we start with k=2 in the 1st dimension (of size 5), we
  // will prepare floor(5/2)=2 ciphertexts as follows:
  //
  //    ( s0 s2 s0 s2 0 )   ( s4 s6 s4 s6 0 )
  //    ( s1 s3 s1 s3 0 )   ( s5 s7 s5 s7 0 )
  //
  // The call to recursiveReplicateDim (still with k=2) will first copy
  // s0/s1 and s4/s5 to the zero column at the end, then make a recursive
  // call with k=1 that will complete the replication along the current
  // dimension, resulting in the 4 ciphertexts
  // 
  //  (s0 s0 s0 s0 s0) (s2 s2 s2 s2 s2) (s4 s4 s4 s4 s4) (s6 s6 s6 s6 s6)
  //  (s1 s1 s1 s1 s1) (s3 s3 s3 s3 s3) (s5 s5 s5 s5 s5) (s7 s7 s7 s7 s7)
  //
  // Then a recursive call for the next dimension will complete the
  // replication of these entries, and a final step will deal with the
  // "leftover" positions s8 s9
  


  // The logic below cut the recursion depth by starting from smaller
  // blocks (by default size approx n rather than 2^n).
  // The inital block size is controlled by the recBound parameter:
  //   + recBound>0: blocks of size min(~n, 2^recBound). this ensures
  //     recursion depth <= recBound, and typically much smaller (~log n)
  //   + recBound=0: blocks of size 1 (no recursion)
  //   + recBound<0: blocks of size 2^n (full recursion)

  if (recBound >= 0) { // use heuristic recursion bound
    k = 0;
    if (dSize > 2 && dimProd*NumBits(dSize) > ea.size() / 8) {
      k = NumBits(NumBits(dSize))-1;
      if (k > n) k = n;
      if (k > recBound) k = recBound;
    }
  }
  else { // SHAI: I don't understand this else case
    k = -recBound;
    if (k > n) k = n;
  }

  long blockSize = 1L << k;        // blocks of size 2^k
  long numBlocks = dSize/blockSize;
  long extent = numBlocks * blockSize;

  // extent is an integral multiple of the block size, the recursive
  // call replicates only these slots, and then we have a separate
  // call for the leftover slots.

  Ctxt ctxt1 = ctxt;

  if (extent < dSize) { // select only the slots 0..extent-1 in this dimension
    if (repAux.tab1(d, 0).null()) { // generate mask if not already there
      ZZX mask;
      SelectRangeDim(ea, mask, 0, extent, d);
      repAux.tab1(d, 0).set_ptr(new DoubleCRT(mask, ea.getContext()));
      // store mask in 2nd table (tab1)
    }
    ctxt1.multByConstant(*repAux.tab1(d, 0)); // mult by mask to zero out slots
  }

  if (numBlocks == 1) { // just one block, call the recursive replication
    recursiveReplicateDim(ea, ctxt1, d, extent, k, 0, extent, 
                          dimProd, recBound, repAux, handler);
  }
  else { // replicate the slots in each block separately
    for (long pos = 0; pos < numBlocks; pos++) {
      Ctxt ctxt2 = ctxt1;
      // zero-out all the slots outside the current block
      SelectRangeDim(ea, ctxt2, pos*blockSize, (pos+1)*blockSize, d);

      // replicate the current block across this dimenssion using a
      // simple shift-and-add procedure.
      replicateOneBlock(ea, ctxt2, pos, blockSize, d);
//.........这里部分代码省略.........
开发者ID:alexandredantas,项目名称:HElib,代码行数:101,代码来源:replicate.cpp


注:本文中的EncryptedArray::dimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。