当前位置: 首页>>代码示例>>C++>>正文


C++ EFBRectangle类代码示例

本文整理汇总了C++中EFBRectangle的典型用法代码示例。如果您正苦于以下问题:C++ EFBRectangle类的具体用法?C++ EFBRectangle怎么用?C++ EFBRectangle使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了EFBRectangle类的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: FindVirtualXFB

void FramebufferManagerBase::CopyToVirtualXFB(u32 xfbAddr, u32 fbStride, u32 fbHeight, const EFBRectangle& sourceRc, float Gamma)
{
	if (!g_framebuffer_manager)
		return;

	VirtualXFBListType::iterator vxfb = FindVirtualXFB(xfbAddr, sourceRc.GetWidth(), fbHeight);

	if (m_virtualXFBList.end() == vxfb)
	{
		if (m_virtualXFBList.size() < MAX_VIRTUAL_XFB)
		{
			// create a new Virtual XFB and place it at the front of the list
			m_virtualXFBList.emplace_front();
			vxfb = m_virtualXFBList.begin();
		}
		else
		{
			// Replace the last virtual XFB
			--vxfb;
		}
	}
	//else // replace existing virtual XFB

	// move this Virtual XFB to the front of the list.
	if (m_virtualXFBList.begin() != vxfb)
		m_virtualXFBList.splice(m_virtualXFBList.begin(), m_virtualXFBList, vxfb);

	unsigned int target_width, target_height;
	g_framebuffer_manager->GetTargetSize(&target_width, &target_height);

	// recreate if needed
	if (vxfb->xfbSource && (vxfb->xfbSource->texWidth != target_width || vxfb->xfbSource->texHeight != target_height))
		vxfb->xfbSource.reset();

	if (!vxfb->xfbSource)
	{
		vxfb->xfbSource = g_framebuffer_manager->CreateXFBSource(target_width, target_height, m_EFBLayers);
		if (!vxfb->xfbSource)
			return;

		vxfb->xfbSource->texWidth = target_width;
		vxfb->xfbSource->texHeight = target_height;
	}

	vxfb->xfbSource->srcAddr = vxfb->xfbAddr = xfbAddr;
	vxfb->xfbSource->srcWidth = vxfb->xfbWidth = sourceRc.GetWidth();
	vxfb->xfbSource->srcHeight = vxfb->xfbHeight = fbHeight;

	vxfb->xfbSource->sourceRc = g_renderer->ConvertEFBRectangle(sourceRc);

	// keep stale XFB data from being used
	ReplaceVirtualXFB();

	// Copy EFB data to XFB and restore render target again
	vxfb->xfbSource->CopyEFB(Gamma);
}
开发者ID:Lionel07,项目名称:dolphin,代码行数:56,代码来源:FramebufferManagerBase.cpp

示例2: WARN_LOG

void FramebufferManager::CopyToRealXFB(u32 xfbAddr, u32 fbStride, u32 fbHeight, const EFBRectangle& sourceRc, float Gamma)
{
    u8* xfb_in_ram = Memory::GetPointer(xfbAddr);
    if (!xfb_in_ram)
    {
        WARN_LOG(VIDEO, "Tried to copy to invalid XFB address");
        return;
    }

    TargetRectangle targetRc = g_renderer->ConvertEFBRectangle(sourceRc);
    std::swap(targetRc.top, targetRc.bottom);
    TextureConverter::EncodeToRamYUYV(GetEFBColorTexture(), targetRc, xfb_in_ram, sourceRc.GetWidth(), fbStride, fbHeight, Gamma);
}
开发者ID:Jack-Walker,项目名称:Ishiiruka,代码行数:13,代码来源:FramebufferManager.cpp

示例3: CopyRenderTargetToTexture

void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, PEControl::PixelFormat srcFormat,
	const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf)
{
	// Emulation methods:
	//
	// - EFB to RAM:
	//      Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
	//      Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again.
	//      Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture
	//      Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures.
	//
	// - EFB to texture:
	//      Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders.
	//      Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again.
	//                 Since we don't do any further encoding or decoding here, this method is much faster.
	//                 It also allows enhancing the visual quality by doing scaled EFB copies.
	//
	// - Hybrid EFB copies:
	//      1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM)
	//      1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range.
	//          If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies.
	//      2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before):
	//      2a) Entry doesn't exist:
	//          - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
	//          - Create a texture cache entry for the target (type = TCET_EC_VRAM)
	//          - Store a hash of the encoded RAM data in the texcache entry.
	//      2b) Entry exists AND type is TCET_EC_VRAM:
	//          - Like case 2a, but reuse the old texcache entry instead of creating a new one.
	//      2c) Entry exists AND type is TCET_EC_DYNAMIC:
	//          - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry.
	//          - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway.
	//      3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM.
	//      3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
	//      3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC.
	//          Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now.
	//      3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
	//      Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
	//                 Compatibility is as good as EFB to RAM.
	//      Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
	//                    EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway.
	//
	// Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing.
	//
	// For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies.

	float colmat[28] = {0};
	float *const fConstAdd = colmat + 16;
	float *const ColorMask = colmat + 20;
	ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f;
	ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f;
	unsigned int cbufid = -1;
	bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;

	if (srcFormat == PEControl::Z24)
	{
		switch (dstFormat)
		{
		case 0: // Z4
			colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
			cbufid = 0;
			break;
		case 1: // Z8
		case 8: // Z8
			colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f;
			cbufid = 1;
			break;

		case 3: // Z16
			colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f;
			cbufid = 2;
			break;

		case 11: // Z16 (reverse order)
			colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
			cbufid = 3;
			break;

		case 6: // Z24X8
			colmat[0] = colmat[5] = colmat[10] = 1.0f;
			cbufid = 4;
			break;

		case 9: // Z8M
			colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
			cbufid = 5;
			break;

		case 10: // Z8L
			colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
			cbufid = 6;
			break;

		case 12: // Z16L - copy lower 16 depth bits
			// expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha)
			// Used e.g. in Zelda: Skyward Sword
			colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f;
			cbufid = 7;
			break;

		default:
//.........这里部分代码省略.........
开发者ID:Catnips,项目名称:dolphin,代码行数:101,代码来源:TextureCacheBase.cpp

示例4: CopyRenderTargetToTexture

void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, u32 dstStride, PEControl::PixelFormat srcFormat,
	const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf)
{
	// Emulation methods:
	//
	// - EFB to RAM:
	//      Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
	//      Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again.
	//      Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture
	//      Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures.
	//
	// - EFB to texture:
	//      Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders.
	//      Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again.
	//                 Since we don't do any further encoding or decoding here, this method is much faster.
	//                 It also allows enhancing the visual quality by doing scaled EFB copies.
	//
	// - Hybrid EFB copies:
	//      1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM)
	//      1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range.
	//          If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies.
	//      2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before):
	//      2a) Entry doesn't exist:
	//          - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
	//          - Create a texture cache entry for the target (type = TCET_EC_VRAM)
	//          - Store a hash of the encoded RAM data in the texcache entry.
	//      2b) Entry exists AND type is TCET_EC_VRAM:
	//          - Like case 2a, but reuse the old texcache entry instead of creating a new one.
	//      2c) Entry exists AND type is TCET_EC_DYNAMIC:
	//          - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry.
	//          - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway.
	//      3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM.
	//      3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
	//      3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC.
	//          Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now.
	//      3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
	//      Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
	//                 Compatibility is as good as EFB to RAM.
	//      Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
	//                    EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway.
	//
	// Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing.
	//
	// For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies.

	float colmat[28] = { 0 };
	float *const fConstAdd = colmat + 16;
	float *const ColorMask = colmat + 20;
	ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f;
	ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f;
	unsigned int cbufid = -1;
	bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;

	if (srcFormat == PEControl::Z24)
	{
		switch (dstFormat)
		{
		case 0: // Z4
			colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
			cbufid = 0;
			dstFormat |= _GX_TF_CTF;
			break;
		case 8: // Z8H
			dstFormat |= _GX_TF_CTF;
		case 1: // Z8
			colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f;
			cbufid = 1;
			break;

		case 3: // Z16
			colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f;
			cbufid = 2;
			break;

		case 11: // Z16 (reverse order)
			colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
			cbufid = 3;
			dstFormat |= _GX_TF_CTF;
			break;

		case 6: // Z24X8
			colmat[0] = colmat[5] = colmat[10] = 1.0f;
			cbufid = 4;
			break;

		case 9: // Z8M
			colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
			cbufid = 5;
			dstFormat |= _GX_TF_CTF;
			break;

		case 10: // Z8L
			colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
			cbufid = 6;
			dstFormat |= _GX_TF_CTF;
			break;

		case 12: // Z16L - copy lower 16 depth bits
			// expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha)
			// Used e.g. in Zelda: Skyward Sword
//.........这里部分代码省略.........
开发者ID:dragonbane0,项目名称:dolphin,代码行数:101,代码来源:TextureCacheBase.cpp

示例5: CopyRenderTargetToTexture

void TextureCacheBase::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, u32 dstStride, PEControl::PixelFormat srcFormat,
                                                 const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf)
{
	// Emulation methods:
	//
	// - EFB to RAM:
	//      Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
	//      Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again.
	//      Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture
	//      Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures.
	//
	// - EFB to texture:
	//      Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders.
	//      Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again.
	//                 Since we don't do any further encoding or decoding here, this method is much faster.
	//                 It also allows enhancing the visual quality by doing scaled EFB copies.
	//
	// - Hybrid EFB copies:
	//      1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM)
	//      1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range.
	//          If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies.
	//      2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before):
	//      2a) Entry doesn't exist:
	//          - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
	//          - Create a texture cache entry for the target (type = TCET_EC_VRAM)
	//          - Store a hash of the encoded RAM data in the texcache entry.
	//      2b) Entry exists AND type is TCET_EC_VRAM:
	//          - Like case 2a, but reuse the old texcache entry instead of creating a new one.
	//      2c) Entry exists AND type is TCET_EC_DYNAMIC:
	//          - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry.
	//          - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway.
	//      3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM.
	//      3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
	//      3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC.
	//          Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now.
	//      3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
	//      Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
	//                 Compatibility is as good as EFB to RAM.
	//      Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
	//                    EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway.
	//
	// Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing.
	//
	// For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies.

	float colmat[28] = { 0 };
	float *const fConstAdd = colmat + 16;
	float *const ColorMask = colmat + 20;
	ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f;
	ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f;
	unsigned int cbufid = -1;
	bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;

	if (srcFormat == PEControl::Z24)
	{
		switch (dstFormat)
		{
		case 0: // Z4
			colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
			cbufid = 0;
			dstFormat |= _GX_TF_CTF;
			break;
		case 8: // Z8H
			dstFormat |= _GX_TF_CTF;
		case 1: // Z8
			colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f;
			cbufid = 1;
			break;

		case 3: // Z16
			colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f;
			cbufid = 2;
			break;

		case 11: // Z16 (reverse order)
			colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
			cbufid = 3;
			dstFormat |= _GX_TF_CTF;
			break;

		case 6: // Z24X8
			colmat[0] = colmat[5] = colmat[10] = 1.0f;
			cbufid = 4;
			break;

		case 9: // Z8M
			colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
			cbufid = 5;
			dstFormat |= _GX_TF_CTF;
			break;

		case 10: // Z8L
			colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
			cbufid = 6;
			dstFormat |= _GX_TF_CTF;
			break;

		case 12: // Z16L - copy lower 16 depth bits
			// expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha)
			// Used e.g. in Zelda: Skyward Sword
//.........这里部分代码省略.........
开发者ID:MarquiseRosier,项目名称:dolphin,代码行数:101,代码来源:TextureCacheBase.cpp

示例6: _assert_msg_

size_t PSTextureEncoder::Encode(u8* dst, unsigned int dstFormat,
	PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect,
	bool isIntensity, bool scaleByHalf)
{
	if (!m_ready) // Make sure we initialized OK
		return 0;

	// Clamp srcRect to 640x528. BPS: The Strike tries to encode an 800x600
	// texture, which is invalid.
	EFBRectangle correctSrc = srcRect;
	correctSrc.ClampUL(0, 0, EFB_WIDTH, EFB_HEIGHT);

	// Validate source rect size
	if (correctSrc.GetWidth() <= 0 || correctSrc.GetHeight() <= 0)
		return 0;

	HRESULT hr;

	unsigned int blockW = BLOCK_WIDTHS[dstFormat];
	unsigned int blockH = BLOCK_HEIGHTS[dstFormat];

	// Round up source dims to multiple of block size
	unsigned int actualWidth = correctSrc.GetWidth() / (scaleByHalf ? 2 : 1);
	actualWidth = (actualWidth + blockW-1) & ~(blockW-1);
	unsigned int actualHeight = correctSrc.GetHeight() / (scaleByHalf ? 2 : 1);
	actualHeight = (actualHeight + blockH-1) & ~(blockH-1);

	unsigned int numBlocksX = actualWidth/blockW;
	unsigned int numBlocksY = actualHeight/blockH;

	unsigned int cacheLinesPerRow;
	if (dstFormat == 0x6) // RGBA takes two cache lines per block; all others take one
		cacheLinesPerRow = numBlocksX*2;
	else
		cacheLinesPerRow = numBlocksX;
	_assert_msg_(VIDEO, cacheLinesPerRow*32 <= MAX_BYTES_PER_BLOCK_ROW, "cache lines per row sanity check");

	unsigned int totalCacheLines = cacheLinesPerRow * numBlocksY;
	_assert_msg_(VIDEO, totalCacheLines*32 <= MAX_BYTES_PER_ENCODE, "total encode size sanity check");

	size_t encodeSize = 0;

	// Reset API
	g_renderer->ResetAPIState();

	// Set up all the state for EFB encoding

	{
		D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, FLOAT(cacheLinesPerRow * 8), FLOAT(numBlocksY));
		D3D::context->RSSetViewports(1, &vp);

		EFBRectangle fullSrcRect;
		fullSrcRect.left = 0;
		fullSrcRect.top = 0;
		fullSrcRect.right = EFB_WIDTH;
		fullSrcRect.bottom = EFB_HEIGHT;
		TargetRectangle targetRect = g_renderer->ConvertEFBRectangle(fullSrcRect);

		D3D::context->OMSetRenderTargets(1, &m_outRTV, nullptr);

		ID3D11ShaderResourceView* pEFB = (srcFormat == PEControl::Z24) ?
			FramebufferManager::GetResolvedEFBDepthTexture()->GetSRV() :
			// FIXME: Instead of resolving EFB, it would be better to pick out a
			// single sample from each pixel. The game may break if it isn't
			// expecting the blurred edges around multisampled shapes.
			FramebufferManager::GetResolvedEFBColorTexture()->GetSRV();

		EFBEncodeParams params;
		params.SrcLeft = correctSrc.left;
		params.SrcTop = correctSrc.top;
		params.DestWidth = actualWidth;
		params.ScaleFactor = scaleByHalf ? 2 : 1;
		D3D::context->UpdateSubresource(m_encodeParams, 0, nullptr, &params, 0, 0);
		D3D::stateman->SetPixelConstants(m_encodeParams);

		// Use linear filtering if (bScaleByHalf), use point filtering otherwise
		if (scaleByHalf)
			D3D::SetLinearCopySampler();
		else
			D3D::SetPointCopySampler();

		D3D::drawShadedTexQuad(pEFB,
			targetRect.AsRECT(),
			Renderer::GetTargetWidth(),
			Renderer::GetTargetHeight(),
			SetStaticShader(dstFormat, srcFormat, isIntensity, scaleByHalf),
			VertexShaderCache::GetSimpleVertexShader(),
			VertexShaderCache::GetSimpleInputLayout());

		// Copy to staging buffer
		D3D11_BOX srcBox = CD3D11_BOX(0, 0, 0, cacheLinesPerRow * 8, numBlocksY, 1);
		D3D::context->CopySubresourceRegion(m_outStage, 0, 0, 0, 0, m_out, 0, &srcBox);

		// Transfer staging buffer to GameCube/Wii RAM
		D3D11_MAPPED_SUBRESOURCE map = { 0 };
		hr = D3D::context->Map(m_outStage, 0, D3D11_MAP_READ, 0, &map);
		CHECK(SUCCEEDED(hr), "map staging buffer (0x%x)", hr);

		u8* src = (u8*)map.pData;
		for (unsigned int y = 0; y < numBlocksY; ++y)
//.........这里部分代码省略.........
开发者ID:BlackBeetleKing,项目名称:dolphin,代码行数:101,代码来源:PSTextureEncoder.cpp


注:本文中的EFBRectangle类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。