本文整理汇总了C++中DistributedTetrahedralMesh::ConstructRegularSlabMesh方法的典型用法代码示例。如果您正苦于以下问题:C++ DistributedTetrahedralMesh::ConstructRegularSlabMesh方法的具体用法?C++ DistributedTetrahedralMesh::ConstructRegularSlabMesh怎么用?C++ DistributedTetrahedralMesh::ConstructRegularSlabMesh使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DistributedTetrahedralMesh
的用法示例。
在下文中一共展示了DistributedTetrahedralMesh::ConstructRegularSlabMesh方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: TestNodeExchange
void TestNodeExchange() throw(Exception)
{
HeartConfig::Instance()->Reset();
HeartConfig::Instance()->Reset();
DistributedTetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(0.1, 1.0); // [0,1] with h=0.1, ie 11 node mesh
MyCardiacCellFactory cell_factory;
cell_factory.SetMesh(&mesh);
MonodomainTissue<1> monodomain_tissue( &cell_factory, true );
if ( PetscTools::GetNumProcs() == 1 )
{
TS_ASSERT_EQUALS( mesh.GetNumHaloNodes(), 0u );
}
else
{
if ( PetscTools::AmMaster() || PetscTools::AmTopMost() )
{
TS_ASSERT_EQUALS( mesh.GetNumHaloNodes(), 1u );
}
else
{
TS_ASSERT_EQUALS( mesh.GetNumHaloNodes(), 2u );
}
}
for (DistributedTetrahedralMesh<1,1>::HaloNodeIterator it=mesh.GetHaloNodeIteratorBegin();
it != mesh.GetHaloNodeIteratorEnd();
++it)
{
AbstractCardiacCellInterface* cell = monodomain_tissue.GetCardiacCellOrHaloCell( (*it)->GetIndex() );
TS_ASSERT_DELTA(cell->GetStimulus(0.001),0,1e-10);
}
if ( PetscTools::AmMaster() )
{
// Master owns node 0
AbstractCardiacCellInterface* cell = monodomain_tissue.GetCardiacCellOrHaloCell(0);
TS_ASSERT_DELTA(cell->GetStimulus(0.001), -80.0, 1e-10);
}
else
{
// Zero is not halo owned by any process (unless we have a lot of them).
TS_ASSERT_THROWS_CONTAINS(monodomain_tissue.GetCardiacCellOrHaloCell(0),
"Requested node/halo 0 does not belong to processor ");
}
}
示例2: TestArchiving
/*
* This is the same as TestConductionVelocityConvergesFasterWithSvi1d with i=2, but solves in two parts.
* If that test changes, check the hardcoded values here!
*/
void TestArchiving()
{
std::string archive_dir = "monodomain_svi_archive";
std::string archive_file = "monodomain_svi.arch";
std::string output_dir = "monodomain_svi_output";
{ // Save
HeartConfig::Instance()->SetSimulationDuration(0.1); //ms
HeartConfig::Instance()->SetOdePdeAndPrintingTimeSteps(0.01, 0.01, 0.01);
HeartConfig::Instance()->SetOutputDirectory(output_dir);
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
HeartConfig::Instance()->SetUseStateVariableInterpolation();
DistributedTetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(0.02, 1.0);
BlockCellFactory<1> cell_factory;
MonodomainProblem<1> monodomain_problem( &cell_factory );
monodomain_problem.SetMesh(&mesh);
monodomain_problem.Initialise();
monodomain_problem.Solve();
CardiacSimulationArchiver<MonodomainProblem<1> >::Save(monodomain_problem, archive_dir);
}
HeartConfig::Instance()->Reset();
{ // Load
HeartConfig::Instance()->SetUseStateVariableInterpolation(false); // Just in case...
MonodomainProblem<1> *p_monodomain_problem = CardiacSimulationArchiver<MonodomainProblem<1> >::Load(archive_dir);
HeartConfig::Instance()->SetSimulationDuration(4.0); //ms
p_monodomain_problem->Solve();
ReplicatableVector final_voltage;
final_voltage.ReplicatePetscVector(p_monodomain_problem->GetSolution());
double probe_voltage = final_voltage[15];
TS_ASSERT_DELTA(probe_voltage, 17.3131, 1e-3);
delete p_monodomain_problem;
}
}
示例3: if
void TestConductionVelocityConvergesFasterWithSvi1d()
{
double h[3] = {0.001,0.01,0.02};
unsigned probe_node_index[3] = {300, 30, 15};
unsigned number_of_nodes[3] = {1001, 101, 51};
std::vector<double> conduction_vel_ici(3);
std::vector<double> conduction_vel_svi(3);
ReplicatableVector final_voltage_ici;
ReplicatableVector final_voltage_svi;
//HeartConfig::Instance()->SetUseRelativeTolerance(1e-8);
HeartConfig::Instance()->SetSimulationDuration(4.0); //ms
HeartConfig::Instance()->SetOdePdeAndPrintingTimeSteps(0.01, 0.01, 0.01);
for (unsigned i=0; i<3; i++)
{
// ICI - ionic current interpolation - the default
{
DistributedTetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(h[i], 1.0);
TS_ASSERT_EQUALS(mesh.GetNumNodes(), number_of_nodes[i]);
//Double check (for later) that the indexing is as expected
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal( probe_node_index[i] ))
{
TS_ASSERT_DELTA(mesh.GetNode( probe_node_index[i] )->rGetLocation()[0], 0.3, 1e-8);
}
std::stringstream output_dir;
output_dir << "MonodomainIci_" << h[i];
HeartConfig::Instance()->SetOutputDirectory(output_dir.str());
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
// need to have this for i=1,2 cases!!
HeartConfig::Instance()->SetUseStateVariableInterpolation(false);
BlockCellFactory<1> cell_factory;
MonodomainProblem<1> monodomain_problem( &cell_factory );
monodomain_problem.SetMesh(&mesh);
monodomain_problem.Initialise();
monodomain_problem.Solve();
final_voltage_ici.ReplicatePetscVector(monodomain_problem.GetSolution());
//// see #1633
//// end time needs to be increased for these (say, to 7ms)
// Hdf5DataReader simulation_data(OutputFileHandler::GetChasteTestOutputDirectory() + output_dir.str(),
// "results", false);
// PropagationPropertiesCalculator ppc(&simulation_data);
// unsigned node_at_0_04 = (unsigned)round(0.04/h[i]);
// unsigned node_at_0_40 = (unsigned)round(0.40/h[i]);
// assert(fabs(mesh.GetNode(node_at_0_04)->rGetLocation()[0]-0.04)<1e-6);
// assert(fabs(mesh.GetNode(node_at_0_40)->rGetLocation()[0]-0.40)<1e-6);
// conduction_vel_ici[i] = ppc.CalculateConductionVelocity(node_at_0_04,node_at_0_40,0.36);
// std::cout << "conduction_vel_ici = " << conduction_vel_ici[i] << "\n";
}
// SVI - state variable interpolation
{
DistributedTetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(h[i], 1.0);
//Double check (for later) that the indexing is as expected
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal( probe_node_index[i] ))
{
TS_ASSERT_DELTA(mesh.GetNode( probe_node_index[i] )->rGetLocation()[0], 0.3, 1e-8);
}
std::stringstream output_dir;
output_dir << "MonodomainSvi_" << h[i];
HeartConfig::Instance()->SetOutputDirectory(output_dir.str());
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
HeartConfig::Instance()->SetUseStateVariableInterpolation();
BlockCellFactory<1> cell_factory;
MonodomainProblem<1> monodomain_problem( &cell_factory );
monodomain_problem.SetMesh(&mesh);
monodomain_problem.Initialise();
monodomain_problem.Solve();
final_voltage_svi.ReplicatePetscVector(monodomain_problem.GetSolution());
// Hdf5DataReader simulation_data(OutputFileHandler::GetChasteTestOutputDirectory() + output_dir.str(),
// "results", false);
// PropagationPropertiesCalculator ppc(&simulation_data);
// unsigned node_at_0_04 = (unsigned)round(0.04/h[i]);
// unsigned node_at_0_40 = (unsigned)round(0.40/h[i]);
// assert(fabs(mesh.GetNode(node_at_0_04)->rGetLocation()[0]-0.04)<1e-6);
// assert(fabs(mesh.GetNode(node_at_0_40)->rGetLocation()[0]-0.40)<1e-6);
// conduction_vel_svi[i] = ppc.CalculateConductionVelocity(node_at_0_04,node_at_0_40,0.36);
// std::cout << "conduction_vel_svi = " << conduction_vel_svi[i] << "\n";
}
if (i==0) // finest mesh
{
for (unsigned j=0; j<final_voltage_ici.GetSize(); j++)
{
// visually checked they agree at this mesh resolution, and chosen tolerance from results
//.........这里部分代码省略.........
示例4: controller
void Test1dApd() throw(Exception)
{
HeartConfig::Instance()->SetPrintingTimeStep(1.0);
HeartConfig::Instance()->SetSimulationDuration(400); //ms
DistributedTetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(0.01, 1.0); // h=0.01cm, width=1cm
PlaneStimulusCellFactory<CellLuoRudy1991FromCellML, 1> cell_factory(-600.0*1000);
//////////////////////////////////////////////////////////////////////////
// run original simulation - no adaptivity, dt=0.01 all the way through
//////////////////////////////////////////////////////////////////////////
HeartConfig::Instance()->SetOutputDirectory("MonoWithTimeAdaptivity1dLong/OrigNoAdapt");
MonodomainProblem<1> problem(&cell_factory);
problem.SetMesh(&mesh);
problem.Initialise();
problem.Solve();
HeartEventHandler::Headings();
HeartEventHandler::Report();
//////////////////////////////////////////////////////////////////////////
// run adaptive simulation - dt=0.01 for first 2ms, then dt=1
//////////////////////////////////////////////////////////////////////////
HeartConfig::Instance()->SetOutputDirectory("MonoWithTimeAdaptivity1dLong/SimpleAdapt");
MonodomainProblem<1> adaptive_problem(&cell_factory);
adaptive_problem.SetMesh(&mesh);
FixedTimeAdaptivityController controller(25);
adaptive_problem.SetUseTimeAdaptivityController(true, &controller);
adaptive_problem.Initialise();
adaptive_problem.Solve();
HeartEventHandler::Headings();
HeartEventHandler::Report();
Hdf5DataReader reader_no_adapt("MonoWithTimeAdaptivity1dLong/OrigNoAdapt","SimulationResults");
Hdf5DataReader reader_adapt("MonoWithTimeAdaptivity1dLong/SimpleAdapt","SimulationResults");
unsigned num_timesteps = reader_no_adapt.GetUnlimitedDimensionValues().size();
assert(num_timesteps == reader_adapt.GetUnlimitedDimensionValues().size());
DistributedVectorFactory factory(mesh.GetNumNodes());
Vec voltage_no_adapt = factory.CreateVec();
Vec voltage_adapt = factory.CreateVec();
Vec difference;
VecDuplicate(voltage_adapt, &difference);
for (unsigned timestep=0; timestep<num_timesteps; timestep++)
{
reader_no_adapt.GetVariableOverNodes(voltage_no_adapt, "V", timestep);
reader_adapt.GetVariableOverNodes(voltage_adapt, "V", timestep);
PetscVecTools::WAXPY(difference, -1.0, voltage_adapt, voltage_no_adapt);
double l_inf_norm;
VecNorm(difference, NORM_INFINITY, &l_inf_norm);
//std::cout << l_inf_norm << "\n";
if (timestep < 25)
{
TS_ASSERT_DELTA(l_inf_norm, 0.0, 1e-10); // first 25 ms, there should be no difference
}
else
{
TS_ASSERT_DELTA(l_inf_norm, 0.0, 2.25); // the difference is at most ~2mv, which occurs during the downstroke
}
}
PetscTools::Destroy(voltage_no_adapt);
PetscTools::Destroy(voltage_adapt);
}
示例5: TestConductivityModifier
void TestConductivityModifier() throw(Exception)
{
/*
* Generate a mesh.
*/
DistributedTetrahedralMesh<2,2> mesh;
mesh.ConstructRegularSlabMesh(0.5, 1.0, 0.5); // Mesh has 4 elements
/*
* Here we're using a trivial cell factory for simplicity, but usually you'll provide your own one.
* Set up the problem with the factory as usual.
*/
ZeroStimulusCellFactory<CellLuoRudy1991FromCellML,2> cell_factory;
BidomainProblem<2> bidomain_problem( &cell_factory );
bidomain_problem.SetMesh( &mesh );
/*
* We need to apply the modifier directly to the tissue, which comes from the problem, but is only
* accessible after `Initialise()`, so let's do that now.
*/
bidomain_problem.Initialise();
BidomainTissue<2>* p_bidomain_tissue = bidomain_problem.GetBidomainTissue();
/*
* Get the original conductivity tensor values. We haven't set them using
* `HeartConfig->SetIntra/ExtracellularConductivities` so they'll just be the defaults.
*
* The first argument below is the element ID (we just check the first element we own here). The second accesses
* the diagonal elements. We just do (0,0), as (1,1) should be the same (no fibre orientation).
* Off-diagonal elements will be 0.
*
* As we don't have many elements, when we run on more than two processors some processors
* will not own any elements. We only try to access the conductivity tensors if the process
* owns at least one element.
*
* We then check that we have the correct (default) conductivity values.
*/
double orig_intra_conductivity_0 = 0.0;
double orig_extra_conductivity_0 = 0.0;
if (mesh.GetElementIteratorBegin() != mesh.GetElementIteratorEnd())
{
unsigned first_element = mesh.GetElementIteratorBegin()->GetIndex();
orig_intra_conductivity_0 = p_bidomain_tissue->rGetIntracellularConductivityTensor(first_element)(0,0);
orig_extra_conductivity_0 = p_bidomain_tissue->rGetExtracellularConductivityTensor(first_element)(0,0);
TS_ASSERT_DELTA(orig_intra_conductivity_0, 1.75, 1e-9); // hard-coded using default
TS_ASSERT_DELTA(orig_extra_conductivity_0, 7.0, 1e-9); // hard-coded using default
}
/*
* Now we can make the modifier and apply it to the tissue using `SetConductivityModifier`.
*/
SimpleConductivityModifier modifier;
p_bidomain_tissue->SetConductivityModifier( &modifier );
/*
* To confirm that the conductivities have changed, let's iterate over all elements owned by this process
* and check their conductivity against what we expect.
*/
for (AbstractTetrahedralMesh<2,2>::ElementIterator elt_iter=mesh.GetElementIteratorBegin();
elt_iter!=mesh.GetElementIteratorEnd();
++elt_iter)
{
unsigned index = elt_iter->GetIndex();
if (index == 0u)
{
TS_ASSERT_DELTA(p_bidomain_tissue->rGetIntracellularConductivityTensor(0)(0,0), 3.14, 1e-9);
TS_ASSERT_DELTA(p_bidomain_tissue->rGetExtracellularConductivityTensor(0)(0,0), 3.14, 1e-9);
TS_ASSERT_DELTA(p_bidomain_tissue->rGetIntracellularConductivityTensor(0)(1,1), 0.707, 1e-9);
TS_ASSERT_DELTA(p_bidomain_tissue->rGetExtracellularConductivityTensor(0)(1,1), 0.707, 1e-9);
}
else
{
TS_ASSERT_DELTA(p_bidomain_tissue->rGetIntracellularConductivityTensor(index)(0,0), 1.0*index*orig_intra_conductivity_0, 1e-9);
TS_ASSERT_DELTA(p_bidomain_tissue->rGetExtracellularConductivityTensor(index)(0,0), 1.5*index*orig_extra_conductivity_0, 1e-9);
}
}
}
开发者ID:Chaste,项目名称:Old-Chaste-svn-mirror,代码行数:78,代码来源:TestBidomainWithConductivityModifierTutorial.hpp
示例6: TestSimpleSimulation
void TestSimpleSimulation() throw(Exception)
{
/*Simulation parameters*/
HeartConfig::Instance()->SetSimulationDuration(0.7); //ms (falls over after this)
HeartConfig::Instance()->SetUseAbsoluteTolerance(1e-6);
//HeartConfig::Instance()->SetOdeTimeStep(0.01);
const double width = 0.1;
const double height = 0.1;
const double depth = 0.1;
const unsigned num_elem_x = 8;
const double space_step = width/num_elem_x;
/* Make the mesh*/
DistributedTetrahedralMesh<3,3> mesh;
mesh.ConstructRegularSlabMesh(space_step, width, height, depth);
/*Create a cell factory of the type we defined above. */
GeneralPlaneStimulusCellFactory<CellLuoRudy1991FromCellML, 3> cell_factory(num_elem_x, width);
/* monodomain problem class using (a pointer to) the cell factory */
BidomainProblem<3> problem( &cell_factory );
problem.SetMesh(&mesh);
/*
* HOW_TO_TAG Cardiac/Problem definition
* Set discrete '''cuboid''' areas to have heterogeneous (intra- and/or extra-cellular) conductivity tensors.
*/
std::vector<ChasteCuboid<3> > input_areas;
std::vector< c_vector<double,3> > intra_conductivities;
std::vector< c_vector<double,3> > extra_conductivities;
ChastePoint<3> corner_a(width/2, 0, 0);
ChastePoint<3> corner_b(width, height, depth);
input_areas.push_back(ChasteCuboid<3> (corner_a, corner_b));
//within the cuboid
intra_conductivities.push_back( Create_c_vector(0.1, 0.1, 0.1) );
extra_conductivities.push_back( Create_c_vector(0.0, 0.0, 0.0) );
//This test should *fail* if you comment out the following line
//(which blocks conductivity on the RHS of the slab).
HeartConfig::Instance()->SetConductivityHeterogeneities(input_areas, intra_conductivities, extra_conductivities);
//elsewhere
HeartConfig::Instance()->SetIntracellularConductivities(Create_c_vector(1.2, 1.2, 1.2));
HeartConfig::Instance()->SetExtracellularConductivities(Create_c_vector(1.2, 1.2, 1.2));
/* set parameters*/
// HeartConfig::Instance()->SetSurfaceAreaToVolumeRatio(1.0);
// HeartConfig::Instance()->SetCapacitance(1.0);
/* Output Directory and prefix (for the hdf5 file), relative to CHASTE_TEST_OUTPUT*/
HeartConfig::Instance()->SetOutputDirectory("slab_results_het_halfcond");
HeartConfig::Instance()->SetOutputFilenamePrefix("Slab_small");
/* Initialise the problem*/
problem.Initialise();
/* Solve the PDE monodomain equaion*/
problem.Solve();
ReplicatableVector voltage_replicated(problem.GetSolution());
TS_ASSERT_EQUALS(mesh.GetNumNodes() * 2, voltage_replicated.GetSize());
unsigned lo, hi;
lo = mesh.GetDistributedVectorFactory()->GetLow();
hi = mesh.GetDistributedVectorFactory()->GetHigh();
for (unsigned i=lo; i<hi; i++)
{
double x = mesh.GetNode(i)->rGetLocation()[0];
if (x<width/2)
{
//Left side is stimulated
TS_ASSERT_LESS_THAN(-71.0,voltage_replicated[2 * i]);
}
else if (x>width/2)
{
//Right side is blocked
TS_ASSERT_LESS_THAN(voltage_replicated[2 * i],-82.0);
}
}
}
示例7: if
void Test2dBathMultipleBathConductivities() throw (Exception)
{
HeartConfig::Instance()->SetSimulationDuration(2.0); //ms
HeartConfig::Instance()->SetOutputDirectory("BidomainBath2dMultipleBathConductivities");
HeartConfig::Instance()->SetOutputFilenamePrefix("bidomain_bath_2d");
HeartConfig::Instance()->SetOdeTimeStep(0.001); //ms ???
std::set<unsigned> tissue_ids;
tissue_ids.insert(0); // Same as default value defined in HeartConfig
std::set<unsigned> bath_ids;
bath_ids.insert(2);
bath_ids.insert(3);
bath_ids.insert(4);
HeartConfig::Instance()->SetTissueAndBathIdentifiers(tissue_ids, bath_ids);
// need to create a cell factory but don't want any intra stim, so magnitude
// of stim is zero.
c_vector<double,2> centre;
centre(0) = 0.05; // cm
centre(1) = 0.05; // cm
BathCellFactory<2> cell_factory( 0.0, centre);
BidomainWithBathProblem<2> bidomain_problem( &cell_factory );
DistributedTetrahedralMesh<2,2> mesh;
mesh.ConstructRegularSlabMesh(0.05, 0.9, 0.9);
// set the x<0.25 and x>0.75 regions as the bath region
for (AbstractTetrahedralMesh<2,2>::ElementIterator iter = mesh.GetElementIteratorBegin();
iter != mesh.GetElementIteratorEnd();
++iter)
{
double x = iter->CalculateCentroid()[0];
double y = iter->CalculateCentroid()[1];
if( (x>0.3) && (x<0.6) && (y>0.3) && (y<0.6) )
{
iter->SetAttribute(0);
}
else
{
if (y<0.2)
{
iter->SetAttribute(2);
}
else if (y<0.7)
{
iter->SetAttribute(3);
}
else if (y<0.9)
{
iter->SetAttribute(4);
}
}
}
std::map<unsigned, double> multiple_bath_conductivities;
multiple_bath_conductivities[2] = 7.0;
multiple_bath_conductivities[3] = 1.0;
multiple_bath_conductivities[4] = 0.001;
HeartConfig::Instance()->SetBathMultipleConductivities(multiple_bath_conductivities);
double boundary_flux = -3.0e3;
double start_time = 0.0;
double duration = 1.0; // of the stimulus, in ms
HeartConfig::Instance()->SetElectrodeParameters(false, 0, boundary_flux, start_time, duration);
bidomain_problem.SetMesh(&mesh);
bidomain_problem.Initialise();
bidomain_problem.Solve();
DistributedVector distributed_solution = bidomain_problem.GetSolutionDistributedVector();
DistributedVector::Stripe voltage(distributed_solution, 0);
/*
* We are checking the last time step. This test will only make sure that an AP is triggered.
*/
bool ap_triggered = false;
for (DistributedVector::Iterator index = distributed_solution.Begin();
index!= distributed_solution.End();
++index)
{
// test V = 0 for all bath nodes and that an AP is triggered in the tissue
if (HeartRegionCode::IsRegionBath( mesh.GetNode(index.Global)->GetRegion() )) // bath
{
TS_ASSERT_DELTA(voltage[index], 0.0, 1e-12);
}
else if (voltage[index] > 0.0)//at the last time step
{
ap_triggered = true;
}
}
TS_ASSERT(PetscTools::ReplicateBool(ap_triggered));
//.........这里部分代码省略.........
示例8: TestSolveCellSystemsInclUpdateVoltageWithNodeExchange
void TestSolveCellSystemsInclUpdateVoltageWithNodeExchange() throw(Exception)
{
HeartConfig::Instance()->Reset();
DistributedTetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(1.0, 1.0); // [0,1] with h=0.1, ie 11 node mesh
MyCardiacCellFactory cell_factory;
cell_factory.SetMesh(&mesh);
MonodomainTissue<1> monodomain_tissue( &cell_factory, true );
Vec voltage = PetscTools::CreateAndSetVec(2, -81.4354); // something that isn't resting potential
monodomain_tissue.SolveCellSystems(voltage, 0, 1, false); // solve for 1ms without updating the voltage
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal(0)) // Is node 0 locally owned?
{
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCell(0)->GetVoltage(), -81.4354, 1e-3);
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCellOrHaloCell(1)->GetVoltage(), -81.4354, 1e-3);
}
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal(1)) // Is node 1 locally owned?
{
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCellOrHaloCell(0)->GetVoltage(), -81.4354, 1e-3);
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCell(1)->GetVoltage(), -81.4354, 1e-3);
}
Vec voltage2 = PetscTools::CreateAndSetVec(2, -75);
monodomain_tissue.SolveCellSystems(voltage2, 1, 2, true); // solve another ms, using this new voltage, but now updating the voltage too
ReplicatableVector voltage2_repl(voltage2); // should have changed following solve
// check the new voltage in the cell is NEAR -75 (otherwise the passed in voltage wasn't used, but
// NOT EXACTLY -75, ie that the voltage was solved for.
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal(0)) // Is node 0 locally owned?
{
// check has been updated
TS_ASSERT_DIFFERS(monodomain_tissue.GetCardiacCell(0)->GetVoltage(), -75);
// check near -75
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCell(0)->GetVoltage(), -75, 2.0); // within 2mV
// check the passed in voltage was updated
TS_ASSERT_DELTA(voltage2_repl[0], monodomain_tissue.GetCardiacCell(0)->GetVoltage(), 1e-10);
}
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal(1)) // Is node 1 locally owned?
{
TS_ASSERT_DIFFERS(monodomain_tissue.GetCardiacCell(1)->GetVoltage(), -75);
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCell(1)->GetVoltage(), -75, 2.0); // within 2mV
TS_ASSERT_DELTA(voltage2_repl[1], monodomain_tissue.GetCardiacCell(1)->GetVoltage(), 1e-10);
}
// now check the new voltages have been communicated
// check the new voltage in the cell is NEAR -75 (otherwise the passed in voltage wasn't used, but
// NOT EXACTLY -75, ie that the voltage was solved for.
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal(0)) // Is node 0 locally owned?
{
TS_ASSERT_DIFFERS(monodomain_tissue.GetCardiacCellOrHaloCell(1)->GetVoltage(), -75);
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCellOrHaloCell(1)->GetVoltage(), -75, 2.0); // within 2mV
TS_ASSERT_DELTA(voltage2_repl[1], monodomain_tissue.GetCardiacCellOrHaloCell(1)->GetVoltage(), 1e-10);
}
if (mesh.GetDistributedVectorFactory()->IsGlobalIndexLocal(1)) // Is node 1 locally owned?
{
TS_ASSERT_DIFFERS(monodomain_tissue.GetCardiacCellOrHaloCell(0)->GetVoltage(), -75);
TS_ASSERT_DELTA(monodomain_tissue.GetCardiacCellOrHaloCell(0)->GetVoltage(), -75, 2.0); // within 2mV
TS_ASSERT_DELTA(voltage2_repl[0], monodomain_tissue.GetCardiacCellOrHaloCell(0)->GetVoltage(), 1e-10);
}
PetscTools::Destroy(voltage);
PetscTools::Destroy(voltage2);
}
示例9: TestBidomainWithBathWithSvi
void TestBidomainWithBathWithSvi() throw(Exception)
{
/* Make a 4x4 node mesh and set two interior elements to be bath elements */
DistributedTetrahedralMesh<2,2> mesh;
mesh.ConstructRegularSlabMesh(0.04, 0.12, 0.12);
for (AbstractTetrahedralMesh<2,2>::ElementIterator iter=mesh.GetElementIteratorBegin();
iter != mesh.GetElementIteratorEnd();
++iter)
{
unsigned element_index = iter->GetIndex();
if ( element_index==10 || element_index==17 )
{
iter->SetAttribute(HeartRegionCode::GetValidBathId());
}
else
{
iter->SetAttribute(HeartRegionCode::GetValidTissueId());
}
}
HeartConfig::Instance()->SetSimulationDuration(10.0); // ms
HeartConfig::Instance()->SetOdePdeAndPrintingTimeSteps(0.001, 0.025, 0.25);
HeartConfig::Instance()->SetIntracellularConductivities(Create_c_vector(1.75, 0.17));
HeartConfig::Instance()->SetExtracellularConductivities(Create_c_vector(7.0, 0.7));
ReplicatableVector final_solution_ici;
ReplicatableVector final_solution_svi;
// ICI - ionic current interpolation (the default)
{
HeartConfig::Instance()->SetOutputDirectory("BidomainWithBathIci2d");
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
HeartConfig::Instance()->SetUseStateVariableInterpolation(false);
BathCellFactory cell_factory;
BidomainWithBathProblem<2> bidomain_problem( &cell_factory );
bidomain_problem.SetMesh(&mesh);
bidomain_problem.Initialise();
bidomain_problem.Solve();
final_solution_ici.ReplicatePetscVector(bidomain_problem.GetSolution());
}
// SVI - state variable interpolation
{
HeartConfig::Instance()->SetOutputDirectory("BidomainWithBathSvi2d");
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
HeartConfig::Instance()->SetUseStateVariableInterpolation(true);
BathCellFactory cell_factory;
BidomainWithBathProblem<2> bidomain_problem( &cell_factory );
bidomain_problem.SetMesh(&mesh);
bidomain_problem.Initialise();
bidomain_problem.Solve();
final_solution_svi.ReplicatePetscVector(bidomain_problem.GetSolution());
}
// ICI
TS_ASSERT_DELTA(final_solution_ici[15*2], 7.0918, 2e-3); // Node 15 phi_i
TS_ASSERT_DELTA(final_solution_ici[15*2+1], 0.0401, 1e-3); // Node 15 phi_e
// SVI
TS_ASSERT_DELTA(final_solution_svi[15*2], 10.6217, 2e-3); // Node 15 phi_i
TS_ASSERT_DELTA(final_solution_svi[15*2+1], -0.0180, 1e-3); // Node 15 phi_e
}
示例10: if
void TestConductionVelocityConvergesFasterWithSvi1d() throw(Exception)
{
double h[3] = {0.001,0.01,0.02};
std::vector<double> conduction_vel_nci(3);
std::vector<double> conduction_vel_svi(3);
ReplicatableVector final_solution_ici;
ReplicatableVector final_solution_svi;
ReplicatableVector final_solution_svit;
HeartConfig::Instance()->SetSimulationDuration(4.0); //ms
HeartConfig::Instance()->SetOdePdeAndPrintingTimeSteps(0.01, 0.01, 0.01);
for(unsigned i=0; i<3; i++)
{
// ICI - ionic current interpolation - the default
{
TetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(h[i], 1.0);
std::stringstream output_dir;
output_dir << "BidomainIci_" << h[i];
HeartConfig::Instance()->SetOutputDirectory(output_dir.str());
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
// need to have this for i=1,2 cases!!
HeartConfig::Instance()->SetUseStateVariableInterpolation(false);
BlockCellFactory<1> cell_factory;
BidomainProblem<1> bidomain_problem( &cell_factory );
bidomain_problem.SetMesh(&mesh);
bidomain_problem.Initialise();
bidomain_problem.Solve();
final_solution_ici.ReplicatePetscVector(bidomain_problem.GetSolution());
}
// SVI - state variable interpolation
{
DistributedTetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(h[i], 1.0);
std::stringstream output_dir;
output_dir << "BidomainSvi_" << h[i];
HeartConfig::Instance()->SetOutputDirectory(output_dir.str());
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
HeartConfig::Instance()->SetUseStateVariableInterpolation();
BlockCellFactory<1> cell_factory;
BidomainProblem<1> bidomain_problem( &cell_factory );
bidomain_problem.SetMesh(&mesh);
bidomain_problem.Initialise();
bidomain_problem.Solve();
final_solution_svi.ReplicatePetscVector(bidomain_problem.GetSolution());
}
// SVIT - state variable interpolation on straight (not distributed) tetrahedral mesh
{
TetrahedralMesh<1,1> mesh;
mesh.ConstructRegularSlabMesh(h[i], 1.0);
std::stringstream output_dir;
output_dir << "BidomainSviTet_" << h[i];
HeartConfig::Instance()->SetOutputDirectory(output_dir.str());
HeartConfig::Instance()->SetOutputFilenamePrefix("results");
HeartConfig::Instance()->SetUseStateVariableInterpolation();
BlockCellFactory<1> cell_factory;
BidomainProblem<1> bidomain_problem( &cell_factory );
bidomain_problem.SetMesh(&mesh);
bidomain_problem.Initialise();
bidomain_problem.Solve();
final_solution_svit.ReplicatePetscVector(bidomain_problem.GetSolution());
}
double voltage_at_0_03_finest_mesh;
if(i==0) // finest mesh
{
for(unsigned j=0; j<final_solution_ici.GetSize(); j++)
{
// visually checked they agree at this mesh resolution, and chosen tolerance from results
TS_ASSERT_DELTA(final_solution_ici[j], final_solution_svi[j], 0.35);
TS_ASSERT_DELTA(final_solution_svit[j], final_solution_svi[j], 1e-8);
if(j%2==0 /* just look at voltage */ && final_solution_ici[j]>-80)
{
// shouldn't be exactly equal, as long as away from resting potential
TS_ASSERT_DIFFERS(final_solution_ici[j], final_solution_svi[j]);
}
}
voltage_at_0_03_finest_mesh = final_solution_ici[600];
TS_ASSERT_DELTA(voltage_at_0_03_finest_mesh, -65.2218, 1e-2); //hardcoded value
}
//.........这里部分代码省略.........