当前位置: 首页>>代码示例>>C++>>正文


C++ DiscreteProblem类代码示例

本文整理汇总了C++中DiscreteProblem的典型用法代码示例。如果您正苦于以下问题:C++ DiscreteProblem类的具体用法?C++ DiscreteProblem怎么用?C++ DiscreteProblem使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DiscreteProblem类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create space, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_0_0);
  wf.add_matrix_form(0, 1, jacobian_0_1);
  wf.add_matrix_form(1, 0, jacobian_1_0);
  wf.add_matrix_form(1, 1, jacobian_1_1);
  wf.add_vector_form(0, residual_0);
  wf.add_vector_form(1, residual_1);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  bool success = false;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!(success = solver->solve()))
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  info("Total running time: %g s", cpu_time.accumulated());

  // Test variable.
  info("ndof = %d.", Space::get_num_dofs(space));

  // Cleanup.
  for(unsigned i = 0; i < DIR_BC_LEFT.size(); i++)
      delete DIR_BC_LEFT[i];
  DIR_BC_LEFT.clear();

  for(unsigned i = 0; i < DIR_BC_RIGHT.size(); i++)
      delete DIR_BC_RIGHT[i];
  DIR_BC_RIGHT.clear();

  delete matrix;
  delete rhs;
  delete solver;
  delete[] coeff_vec;
  delete dp;
  delete space;

  if (success)
  {
//.........这里部分代码省略.........
开发者ID:colman01,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例2: main

int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("square_quad.mesh", &mesh);

  // Perform initial mesh refinement.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Enter boundary markers.
  BCTypes bc_types;
  bc_types.add_bc_dirichlet(BDY_DIRICHLET);
  bc_types.add_bc_neumann(BDY_NEUMANN_LEFT);

  // Enter Dirichlet boudnary values.
  BCValues bc_values;
  bc_values.add_function(BDY_DIRICHLET, essential_bc_values);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bc_types, &bc_values, P_INIT);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(callback(bilinear_form), HERMES_SYM);
  wf.add_vector_form(linear_form, linear_form_ord);

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Set exact solution.
  ExactSolution exact(&mesh, fndd);

  // Initialize views.
  ScalarView sview("Solution", new WinGeom(0, 0, 440, 350));
  sview.show_mesh(false);
  OrderView  oview("Polynomial orders", new WinGeom(450, 0, 420, 350));

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof, graph_cpu, graph_dof_exact, graph_cpu_exact;

  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = construct_refined_space(&space);

    // Assemble the reference problem.
    info("Solving on reference mesh.");
    bool is_linear = true;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();

    // Solve the linear system of the reference problem. If successful, obtain the solution.
    Solution ref_sln;
    if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln);
    else error ("Matrix solver failed.\n");

    // Time measurement.
    cpu_time.tick();

    // Project the fine mesh solution onto the coarse mesh.
    Solution sln;
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver);

    // View the coarse mesh solution and polynomial orders.
    sview.show(&sln);
    oview.show(&space);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate and exact error.");
    Adapt* adaptivity = new Adapt(&space, HERMES_H1_NORM);
    bool solutions_for_adapt = true;
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    // Calculate exact error for each solution component.   
    solutions_for_adapt = false;
    double err_exact_rel = adaptivity->calc_err_exact(&sln, &exact, solutions_for_adapt, HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d",
      Space::get_num_dofs(&space), Space::get_num_dofs(ref_space));
    info("err_est_rel: %g%%, err_exact_rel: %g%%", err_est_rel, err_exact_rel);

    // Time measurement.
//.........这里部分代码省略.........
开发者ID:michalkuraz,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例3: main

int main() 
{
  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData();		
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Plot the space.
  space->plot("space.gp");

  for (int g = 0; g < N_GRP; g++)  
  {
    space->set_bc_left_dirichlet(g, flux_left_surf[g]);
    space->set_bc_right_dirichlet(g, flux_right_surf[g]);
  }
  
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_mat1_0_0, NULL, mat1);
  wf.add_matrix_form(0, 0, jacobian_mat2_0_0, NULL, mat2);
  wf.add_matrix_form(0, 0, jacobian_mat3_0_0, NULL, mat3);
  
  wf.add_matrix_form(0, 1, jacobian_mat1_0_1, NULL, mat1);
  wf.add_matrix_form(0, 1, jacobian_mat2_0_1, NULL, mat2);
  wf.add_matrix_form(0, 1, jacobian_mat3_0_1, NULL, mat3);
  
  wf.add_matrix_form(1, 0, jacobian_mat1_1_0, NULL, mat1);    
  wf.add_matrix_form(1, 0, jacobian_mat2_1_0, NULL, mat2);
  wf.add_matrix_form(1, 0, jacobian_mat3_1_0, NULL, mat3);
    
  wf.add_matrix_form(1, 1, jacobian_mat1_1_1, NULL, mat1);
  wf.add_matrix_form(1, 1, jacobian_mat2_1_1, NULL, mat2);
  wf.add_matrix_form(1, 1, jacobian_mat3_1_1, NULL, mat3);
  
  wf.add_vector_form(0, residual_mat1_0, NULL, mat1);  
  wf.add_vector_form(0, residual_mat2_0, NULL, mat2);  
  wf.add_vector_form(0, residual_mat3_0, NULL, mat3);
	    
  wf.add_vector_form(1, residual_mat1_1, NULL, mat1);
  wf.add_vector_form(1, residual_mat2_1, NULL, mat2); 
  wf.add_vector_form(1, residual_mat3_1, NULL, mat3);  

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
//.........这里部分代码省略.........
开发者ID:alieed,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例4: main

int main() {
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create coarse mesh, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian);
  wf.add_vector_form(residual);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear);

  // Newton's loop on coarse mesh.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec_coarse = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec_coarse);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix_coarse = create_matrix(matrix_solver);
  Vector* rhs_coarse = create_vector(matrix_solver);
  Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse);

  int it = 1;
  while (1) {
    // Obtain the number of degrees of freedom.
    int ndof_coarse = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs_coarse);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i < ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i));

    // Solve the linear system.
    if(!solver_coarse->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec_coarse, space);

    it++;
  }
  
  // Cleanup.
  delete matrix_coarse;
  delete rhs_coarse;
  delete solver_coarse;
  delete [] coeff_vec_coarse;
  delete dp_coarse;

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est;
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as); 

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = construct_refined_space(space);

    // Initialize the FE problem. 
    bool is_linear = false;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
//.........这里部分代码省略.........
开发者ID:FranzGrenvicht,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例5: main

int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("lshape.mesh", &mesh);     // quadrilaterals

  // Perform initial mesh refinements.
  for (int i=0; i<INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, bc_types, essential_bc_values, P_INIT);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(callback(bilinear_form), HERMES_SYM);
  wf.add_vector_form(callback(linear_form));

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Set exact solution.
  ExactSolution exact(&mesh, fndd);

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof, graph_cpu, graph_dof_exact, graph_cpu_exact;

  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = construct_refined_space(&space);

    // Assemble the reference problem.
    info("Solving on reference mesh.");
    bool is_linear = true;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();

    // Solve the linear system of the reference problem. If successful, obtain the solution.
    Solution ref_sln;
    if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln);
    else error ("Matrix solver failed.\n");

    // Time measurement.
    cpu_time.tick();

    // Project the fine mesh solution onto the coarse mesh.
    Solution sln;
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate and exact error.");
    Adapt* adaptivity = new Adapt(&space, HERMES_H1_NORM);
    bool solutions_for_adapt = true;
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    // Calculate exact error for each solution component.   
    solutions_for_adapt = false;
    double err_exact_rel = adaptivity->calc_err_exact(&sln, &exact, solutions_for_adapt, HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d",
	 Space::get_num_dofs(&space), Space::get_num_dofs(ref_space));
    info("err_est_rel: %g%%, err_exact_rel: %g%%", err_est_rel, err_exact_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space::get_num_dofs(&space), err_est_rel);
    graph_dof.save("conv_dof_est.dat");
    graph_cpu.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu.save("conv_cpu_est.dat");
    graph_dof_exact.add_values(Space::get_num_dofs(&space), err_exact_rel);
    graph_dof_exact.save("conv_dof_exact.dat");
    graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel);
    graph_cpu_exact.save("conv_cpu_exact.dat");

    // If err_est too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else
    {
      info("Adapting coarse mesh.");
      done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);
//.........这里部分代码省略.........
开发者ID:dugankevin,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例6: main

int main() {
  // Create space, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);
  info("ndof = %d", Space::get_num_dofs(space));

  // Initialize the weak formulation.
  WeakForm wf(4);
  wf.add_matrix_form(0, 0, jacobian_1_1);
  wf.add_matrix_form(0, 2, jacobian_1_3);
  wf.add_matrix_form(0, 3, jacobian_1_4);
  wf.add_matrix_form(1, 1, jacobian_2_2);
  wf.add_matrix_form(1, 2, jacobian_2_3);
  wf.add_matrix_form(1, 3, jacobian_2_4);
  wf.add_matrix_form(2, 0, jacobian_3_1);
  wf.add_matrix_form(2, 1, jacobian_3_2);
  wf.add_matrix_form(2, 2, jacobian_3_3);
  wf.add_matrix_form(3, 0, jacobian_4_1);
  wf.add_matrix_form(3, 1, jacobian_4_2);
  wf.add_matrix_form(3, 3, jacobian_4_4);
  wf.add_vector_form(0, residual_1);
  wf.add_vector_form(1, residual_2);
  wf.add_vector_form(2, residual_3);
  wf.add_vector_form(3, residual_4);
  wf.add_matrix_form_surf(0, 0, jacobian_surf_right_U_Re_Re, BOUNDARY_RIGHT);
  wf.add_matrix_form_surf(0, 2, jacobian_surf_right_U_Re_Im, BOUNDARY_RIGHT);
  wf.add_matrix_form_surf(1, 1, jacobian_surf_right_U_Im_Re, BOUNDARY_RIGHT);
  wf.add_matrix_form_surf(1, 3, jacobian_surf_right_U_Im_Im, BOUNDARY_RIGHT);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);

  // Set zero initial condition.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  set_zero(coeff_vec, Space::get_num_dofs(space));

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) {
    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i = 0; i < Space::get_num_dofs(space); i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < Space::get_num_dofs(space); i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");

    it++;
  }

  // Plot the solution.
  Linearizer l(space);
  l.plot_solution("solution.gp");

  // cleaning
  delete dp;
  delete rhs;
  delete solver;
  delete[] coeff_vec;
  delete space;
  delete bc_u_re_left;
  delete bc_u_im_left;
  delete matrix;

  info("Done.");
  return 0;
}
开发者ID:colman01,项目名称:hermes,代码行数:92,代码来源:main.cpp

示例7: main

int main(int argc, char* argv[])
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("../domain.mesh", &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize boundary conditions.
  DefaultEssentialBCConst bc_essential("Source", P_SOURCE);
  EssentialBCs bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);
  int ndof = Space::get_num_dofs(&space);
  info("ndof = %d", ndof);

  // Initialize the weak formulation.
  CustomWeakFormAcoustics wf(BDY_NEWTON, RHO, SOUND_SPEED, OMEGA);

  // Initialize coarse and reference mesh solution.
  Solution sln, ref_sln;

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  //ScalarView sview("Solution", new WinGeom(0, 0, 330, 350));
  //sview.show_mesh(false);
  //sview.fix_scale_width(50);
  //OrderView  oview("Polynomial orders", new WinGeom(340, 0, 300, 350));
  
  // DOF and CPU convergence graphs initialization.
  SimpleGraph graph_dof, graph_cpu;

  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
  
  if (matrix_solver == SOLVER_AZTECOO) {
    ((AztecOOSolver*) solver)->set_solver(iterative_method);
    ((AztecOOSolver*) solver)->set_precond(preconditioner);
    // Using default iteration parameters (see solver/aztecoo.h).
  }
  
  // Adaptivity loop:
  int as = 1; 
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = Space::construct_refined_space(&space);

    // Assemble the reference problem.
    info("Solving on reference mesh.");
    bool is_linear = true;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);
      
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();
    
    // Solve the linear system of the reference problem. If successful, obtain the solution.
    if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln);
    else error ("Matrix solver failed.\n");
  
    // Time measurement.
    cpu_time.tick();

    // Project the fine mesh solution onto the coarse mesh.
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver); 
   
    // View the coarse mesh solution and polynomial orders.
    //sview.show(&sln);
    //oview.show(&space);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate."); 
    Adapt* adaptivity = new Adapt(&space);
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", 
      Space::get_num_dofs(&space), Space::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space::get_num_dofs(&space), err_est_rel);
//.........这里部分代码省略.........
开发者ID:blackvladimir,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例8: main

int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh u_mesh, v_mesh;
  H2DReader mloader;
  mloader.load("crack.mesh", &u_mesh);

  // Perform initial uniform mesh refinement.
  for (int i=0; i < INIT_REF_NUM; i++) u_mesh.refine_all_elements();

  // Create initial mesh for the vertical displacement component.
  // This also initializes the multimesh hp-FEM.
  v_mesh.copy(&u_mesh);

  // Create H1 spaces with default shapesets.
  H1Space u_space(&u_mesh, bc_types_xy, essential_bc_values, P_INIT);
  H1Space v_space(MULTI ? &v_mesh : &u_mesh, bc_types_xy, essential_bc_values, P_INIT);

  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, callback(bilinear_form_0_0), HERMES_SYM);
  wf.add_matrix_form(0, 1, callback(bilinear_form_0_1), HERMES_SYM);
  wf.add_matrix_form(1, 1, callback(bilinear_form_1_1), HERMES_SYM);
  wf.add_vector_form_surf(1, linear_form_surf_1, linear_form_surf_1_ord, BDY_TOP);

  // Initialize coarse and reference mesh solutions.
  Solution u_sln, v_sln, u_ref_sln, v_ref_sln;

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est;
  
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1; 
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Tuple<Space *>* ref_spaces = construct_refined_spaces(Tuple<Space *>(&u_space, &v_space));

    // Assemble the reference problem.
    info("Solving on reference mesh.");
    bool is_linear = true;
    DiscreteProblem* dp = new DiscreteProblem(&wf, *ref_spaces, is_linear);
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();
    
    // Solve the linear system of the reference problem. If successful, obtain the solutions.
    if(solver->solve()) Solution::vector_to_solutions(solver->get_solution(), *ref_spaces, 
                                                      Tuple<Solution *>(&u_ref_sln, &v_ref_sln));
    else error ("Matrix solver failed.\n");
  
    // Time measurement.
    cpu_time.tick();

    // Project the fine mesh solution onto the coarse mesh.
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(Tuple<Space *>(&u_space, &v_space), Tuple<Solution *>(&u_ref_sln, &v_ref_sln), 
                   Tuple<Solution *>(&u_sln, &v_sln), matrix_solver); 

    // Calculate element errors.
    info("Calculating error estimate and exact error."); 
    Adapt* adaptivity = new Adapt(Tuple<Space *>(&u_space, &v_space), Tuple<ProjNormType>(HERMES_H1_NORM, HERMES_H1_NORM));
    adaptivity->set_error_form(0, 0, bilinear_form_0_0<scalar, scalar>, bilinear_form_0_0<Ord, Ord>);
    adaptivity->set_error_form(0, 1, bilinear_form_0_1<scalar, scalar>, bilinear_form_0_1<Ord, Ord>);
    adaptivity->set_error_form(1, 0, bilinear_form_1_0<scalar, scalar>, bilinear_form_1_0<Ord, Ord>);
    adaptivity->set_error_form(1, 1, bilinear_form_1_1<scalar, scalar>, bilinear_form_1_1<Ord, Ord>);
      
    // Calculate error estimate for each solution component and the total error estimate.
    Tuple<double> err_est_rel;
    bool solutions_for_adapt = true;
    double err_est_rel_total = adaptivity->calc_err_est(Tuple<Solution *>(&u_sln, &v_sln), Tuple<Solution *>(&u_ref_sln, &v_ref_sln), solutions_for_adapt, 
                               HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_ABS, &err_est_rel) * 100;
    // Time measurement.
    cpu_time.tick();

    // Report results.
    info("ndof_coarse[0]: %d, ndof_fine[0]: %d, err_est_rel[0]: %g%%", 
         u_space.Space::get_num_dofs(), (*ref_spaces)[0]->Space::get_num_dofs(), err_est_rel[0]*100);
    info("ndof_coarse[1]: %d, ndof_fine[1]: %d, err_est_rel[1]: %g%%",
         v_space.Space::get_num_dofs(), (*ref_spaces)[1]->Space::get_num_dofs(), err_est_rel[1]*100);
    info("ndof_coarse_total: %d, ndof_fine_total: %d, err_est_rel_total: %g%%",
         Space::get_num_dofs(Tuple<Space *>(&u_space, &v_space)), Space::get_num_dofs(*ref_spaces), err_est_rel_total);

    // Add entry to DOF and CPU convergence graphs.
    graph_dof_est.add_values(Space::get_num_dofs(Tuple<Space *>(&u_space, &v_space)), err_est_rel_total);
    graph_dof_est.save("conv_dof_est.dat");
//.........这里部分代码省略.........
开发者ID:FranzGrenvicht,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例9: main

int main(int argc, char* argv[])
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();
 
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform initial mesh refinements.
  mesh.refine_all_elements();

  // Initialize boundary conditions.
  CustomEssentialBCNonConst bc_essential(BDY_HORIZONTAL);
  EssentialBCs bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);

  // Initialize the weak formulation.
  CustomWeakFormGeneral wf;

  // Initialize coarse and reference mesh solution.
  Solution sln, ref_sln;

  // Initialize refinement selector. 
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  ScalarView sview("Solution", new WinGeom(0, 0, 440, 350));
  sview.show_mesh(false);
  OrderView  oview("Polynomial orders", new WinGeom(450, 0, 400, 350));
  
  // DOF and CPU convergence graphs initialization.
  SimpleGraph graph_dof, graph_cpu;

  // Adaptivity loop:
  int as = 1; 
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = Space::construct_refined_space(&space);
  
    // Initialize matrix solver.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Assemble reference problem.
    info("Solving on reference mesh.");
    bool is_linear = true;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();
    
    // Solve the linear system of the reference problem. If successful, obtain the solution.
    if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln);
    else error ("Matrix solver failed.\n");
  
    // Time measurement.
    cpu_time.tick();

    // Project the fine mesh solution onto the coarse mesh.
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver); 
   
    // View the coarse mesh solution and polynomial orders.
    sview.show(&sln);
    oview.show(&space);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate."); 
    Adapt* adaptivity = new Adapt(&space);
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", 
      Space::get_num_dofs(&space), Space::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space::get_num_dofs(&space), err_est_rel);
    graph_dof.save("conv_dof_est.dat");
    graph_cpu.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu.save("conv_cpu_est.dat");

    // If err_est_rel too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else 
//.........这里部分代码省略.........
开发者ID:blackvladimir,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例10: main

int main(int argc, char* argv[])
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Load the mesh.
  Mesh u1_mesh, u2_mesh;
  H2DReader mloader;
  mloader.load("../bracket.mesh", &u1_mesh);

  // Initial mesh refinements.
  u1_mesh.refine_element_id(1);
  u1_mesh.refine_element_id(4);

  // Create initial mesh for the vertical displacement component.
  // This also initializes the multimesh hp-FEM.
  u2_mesh.copy(&u1_mesh);

  // Initialize boundary conditions.
  DefaultEssentialBCConst zero_disp(BDY_RIGHT, 0.0);
  EssentialBCs bcs(&zero_disp);

  // Create x- and y- displacement space using the default H1 shapeset.
  H1Space u1_space(&u1_mesh, &bcs, P_INIT);
  H1Space u2_space(&u2_mesh, &bcs, P_INIT);
  info("ndof = %d.", Space::get_num_dofs(Hermes::vector<Space *>(&u1_space, &u2_space)));

  // Initialize the weak formulation.
  CustomWeakForm wf(E, nu, rho*g1, BDY_TOP, f0, f1);

  // Initialize the FE problem.
  bool is_linear = true;
  DiscreteProblem dp(&wf, Hermes::vector<Space *>(&u1_space, &u2_space), is_linear);

  // Initialize coarse and reference mesh solutions.
  Solution u1_sln, u2_sln, u1_ref_sln, u2_ref_sln;

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  //ScalarView s_view_0("Solution (x-displacement)", new WinGeom(0, 0, 400, 350));
  //s_view_0.show_mesh(false);
  //ScalarView s_view_1("Solution (y-displacement)", new WinGeom(760, 0, 400, 350));
  //s_view_1.show_mesh(false);
  //OrderView  o_view_0("Mesh (x-displacement)", new WinGeom(410, 0, 340, 350));
  //OrderView  o_view_1("Mesh (y-displacement)", new WinGeom(1170, 0, 340, 350));
  //ScalarView mises_view("Von Mises stress [Pa]", new WinGeom(0, 405, 400, 350));

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est;

  // Adaptivity loop:
  int as = 1; 
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Hermes::vector<Space *>* ref_spaces = Space::construct_refined_spaces(Hermes::vector<Space *>(&u1_space, &u2_space));

    // Initialize matrix solver.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Assemble the reference problem.
    info("Solving on reference mesh.");
    bool is_linear = true;
    DiscreteProblem* dp = new DiscreteProblem(&wf, *ref_spaces, is_linear);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();
    
    // Solve the linear system of the reference problem. If successful, obtain the solutions.
    if(solver->solve()) Solution::vector_to_solutions(solver->get_solution(), *ref_spaces, 
                                            Hermes::vector<Solution *>(&u1_ref_sln, &u2_ref_sln));
    else error ("Matrix solver failed.\n");
  
    // Time measurement.
    cpu_time.tick();

    // Project the fine mesh solution onto the coarse mesh.
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(Hermes::vector<Space *>(&u1_space, &u2_space), 
                                 Hermes::vector<Solution *>(&u1_ref_sln, &u2_ref_sln), 
                                 Hermes::vector<Solution *>(&u1_sln, &u2_sln), matrix_solver); 
   
    // View the coarse mesh solution and polynomial orders.
    //s_view_0.show(&u1_sln); 
    //o_view_0.show(&u1_space);
    //s_view_1.show(&u2_sln); 
    //o_view_1.show(&u2_space);
    // For von Mises stress Filter.
    //double lambda = (E * nu) / ((1 + nu) * (1 - 2*nu));
    //double mu = E / (2*(1 + nu));
    //VonMisesFilter stress(Hermes::vector<MeshFunction *>(&u1_sln, &u2_sln), lambda, mu);
//.........这里部分代码省略.........
开发者ID:B-Rich,项目名称:hermes-legacy,代码行数:101,代码来源:main.cpp

示例11: main

int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh u_mesh, v_mesh;
  H2DReader mloader;
  mloader.load("../square.mesh", &u_mesh);
  if (MULTI == false) u_mesh.refine_towards_boundary("Outer", INIT_REF_BDY);

  // Create initial mesh (master mesh).
  v_mesh.copy(&u_mesh);

  // Initial mesh refinements in the v_mesh towards the boundary.
  if (MULTI == true) v_mesh.refine_towards_boundary("Outer", INIT_REF_BDY);

  // Set exact solutions.
  ExactSolutionFitzHughNagumo1 exact_u(&u_mesh);
  ExactSolutionFitzHughNagumo2 exact_v(&v_mesh, K);

  // Define right-hand sides.
  CustomRightHandSide1 rhs_1(K, D_u, SIGMA);
  CustomRightHandSide2 rhs_2(K, D_v);

  // Initialize the weak formulation.
  WeakFormFitzHughNagumo wf(&rhs_1, &rhs_2);
  
  // Initialize boundary conditions
  DefaultEssentialBCConst bc_u("Outer", 0.0);
  EssentialBCs bcs_u(&bc_u);
  DefaultEssentialBCConst bc_v("Outer", 0.0);
  EssentialBCs bcs_v(&bc_v);

  // Create H1 spaces with default shapeset for both displacement components.
  H1Space u_space(&u_mesh, &bcs_u, P_INIT_U);
  H1Space v_space(MULTI ? &v_mesh : &u_mesh, &bcs_v, P_INIT_V);

  // Initialize coarse and reference mesh solutions.
  Solution u_sln, v_sln, u_ref_sln, v_ref_sln;

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est, 
              graph_dof_exact, graph_cpu_exact;

  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1; 
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Hermes::vector<Space *>* ref_spaces = 
      Space::construct_refined_spaces(Hermes::vector<Space *>(&u_space, &v_space));
    int ndof_ref = Space::get_num_dofs(Hermes::vector<Space *>(&u_space, &v_space));

    // Initialize matrix solver.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Initialize reference problem.
    info("Solving on reference mesh.");
    DiscreteProblem* dp = new DiscreteProblem(&wf, *ref_spaces);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();
    
    // Initial coefficient vector for the Newton's method.  
    scalar* coeff_vec = new scalar[ndof_ref];
    memset(coeff_vec, 0, ndof_ref * sizeof(scalar));

    // Perform Newton's iteration.
    if (!hermes2d.solve_newton(coeff_vec, dp, solver, matrix, rhs)) error("Newton's iteration failed.");

    // Translate the resulting coefficient vector into the Solution sln.
    Solution::vector_to_solutions(coeff_vec, *ref_spaces, Hermes::vector<Solution *>(&u_ref_sln, &v_ref_sln));

    // Project the fine mesh solution onto the coarse mesh.
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(Hermes::vector<Space *>(&u_space, &v_space), Hermes::vector<Solution *>(&u_ref_sln, &v_ref_sln), 
                   Hermes::vector<Solution *>(&u_sln, &v_sln), matrix_solver); 
   
    // Calculate element errors.
    info("Calculating error estimate and exact error."); 
    Adapt* adaptivity = new Adapt(Hermes::vector<Space *>(&u_space, &v_space));
    
    // Calculate error estimate for each solution component and the total error estimate.
    Hermes::vector<double> err_est_rel;
    double err_est_rel_total = adaptivity->calc_err_est(Hermes::vector<Solution *>(&u_sln, &v_sln), 
                               Hermes::vector<Solution *>(&u_ref_sln, &v_ref_sln), &err_est_rel) * 100;
//.........这里部分代码省略.........
开发者ID:Zhonghua,项目名称:hermes-dev,代码行数:101,代码来源:main.cpp

示例12: main

int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create coarse mesh, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian);
  wf.add_vector_form(residual);

  double elem_errors[MAX_ELEM_NUM];      // This array decides what 
                                         // elements will be refined.
  ElemPtr2 ref_elem_pairs[MAX_ELEM_NUM]; // To store element pairs from the 
                                         // FTR solution. Decides how 
                                         // elements will be hp-refined. 
  for (int i=0; i < MAX_ELEM_NUM; i++) 
  {
    ref_elem_pairs[i][0] = new Element();
    ref_elem_pairs[i][1] = new Element();
  }

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  /// Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as); 

    // Initialize the FE problem.
    bool is_linear = false;
    DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear);
    
    // Newton's loop on coarse mesh.
    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec_coarse = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec_coarse);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix_coarse = create_matrix(matrix_solver);
    Vector* rhs_coarse = create_vector(matrix_solver);
    Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse);

    int it = 1;
    while (1) 
    {
      // Obtain the number of degrees of freedom.
      int ndof_coarse = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs_coarse);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i=0; i<ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i));
 
      // Solve the linear system.
      if(!solver_coarse->solve())
      error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec_coarse, space);
      
      it++;
    }
    
    // Cleanup.
    delete matrix_coarse;
    delete rhs_coarse;
    delete solver_coarse;
    delete [] coeff_vec_coarse;
    delete dp_coarse;
//.........这里部分代码省略.........
开发者ID:FranzGrenvicht,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例13: main


//.........这里部分代码省略.........
      space_rho_v_y.set_uniform_order(P_INIT);
      space_e.set_uniform_order(P_INIT);
    }

    // Adaptivity loop:
    int as = 1; 
    bool done = false;
    do
    {
      info("---- Adaptivity step %d:", as);

      // Construct globally refined reference mesh and setup reference space.
      // Global polynomial order increase = 0;
      int order_increase = 0;
      Hermes::Tuple<Space *>* ref_spaces = construct_refined_spaces(Hermes::Tuple<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), order_increase);

      // Project the previous time level solution onto the new fine mesh.
      info("Projecting the previous time level solution onto the new fine mesh.");
      OGProjection::project_global(*ref_spaces, Hermes::Tuple<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), 
                     Hermes::Tuple<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), matrix_solver, 
                     Hermes::Tuple<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM)); 

      if(as > 1) {
        delete rsln_rho.get_mesh();
        delete rsln_rho_v_x.get_mesh();
        delete rsln_rho_v_y.get_mesh();
        delete rsln_e.get_mesh();
      }

      // Assemble the reference problem.
      info("Solving on reference mesh.");
      bool is_linear = true;
      DiscreteProblem* dp = new DiscreteProblem(&wf, *ref_spaces, is_linear);
      SparseMatrix* matrix = create_matrix(matrix_solver);
      Vector* rhs = create_vector(matrix_solver);
      Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

      // The FE problem is in fact a FV problem.
      dp->set_fvm();
#ifdef HERMES_USE_VECTOR_VALUED_FORMS
      dp->use_vector_valued_forms();
#endif
      dp->assemble(matrix, rhs);

      // Solve the linear system of the reference problem. If successful, obtain the solutions.
      if(solver->solve()) Solution::vector_to_solutions(solver->get_solution(), *ref_spaces, 
                                              Hermes::Tuple<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));
      else error ("Matrix solver failed.\n");

      // Project the fine mesh solution onto the coarse mesh.
      info("Projecting reference solution on coarse mesh.");
      OGProjection::project_global(Hermes::Tuple<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), Hermes::Tuple<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), 
                     Hermes::Tuple<Solution *>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), matrix_solver, 
                     Hermes::Tuple<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM)); 

      // Calculate element errors and total error estimate.
      info("Calculating error estimate.");
      Adapt* adaptivity = new Adapt(Hermes::Tuple<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), Hermes::Tuple<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM));
      bool solutions_for_adapt = true;
      // Error components.
      Hermes::Tuple<double> *error_components = new Hermes::Tuple<double>(4);
      double err_est_rel_total = adaptivity->calc_err_est(Hermes::Tuple<Solution *>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e),
                                 Hermes::Tuple<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), solutions_for_adapt, 
开发者ID:michalkuraz,项目名称:hermes,代码行数:67,代码来源:main.cpp

示例14: main

int main()
{
    // Create space, set Dirichlet BC, enumerate basis functions.
    Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);
    int ndof = Space::get_num_dofs(space);
    info("ndof: %d", ndof);

    // Initialize the weak formulation.
    WeakForm wf;
    wf.add_matrix_form(jacobian);
    wf.add_vector_form(residual);

    // Initialize the FE problem.
    DiscreteProblem *dp = new DiscreteProblem(&wf, space);

    // Allocate coefficient vector.
    double *coeff_vec = new double[ndof];
    memset(coeff_vec, 0, ndof*sizeof(double));

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Time stepping loop.
    double current_time = 0.0;
    while (current_time < T_FINAL)
    {
        // Newton's loop.
        // Fill vector coeff_vec using dof and coeffs arrays in elements.
        get_coeff_vector(space, coeff_vec);

        int it = 1;
        while (true)
        {
            // Assemble the Jacobian matrix and residual vector.
            dp->assemble(coeff_vec, matrix, rhs);

            // Calculate the l2-norm of residual vector.
            double res_l2_norm = get_l2_norm(rhs);

            // Info for user.
            info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

            // If l2 norm of the residual vector is within tolerance, then quit.
            // NOTE: at least one full iteration forced
            //       here because sometimes the initial
            //       residual on fine mesh is too small.
            if(res_l2_norm < NEWTON_TOL && it > 1) break;

            // Multiply the residual vector with -1 since the matrix
            // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
            for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

            // Solve the linear system.
            if(!solver->solve())
                error ("Matrix solver failed.\n");

            // Add \deltaY^{n+1} to Y^n.
            for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

            // If the maximum number of iteration has been reached, then quit.
            if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");

            // Copy coefficients from vector y to elements.
            set_coeff_vector(coeff_vec, space);

            it++;
        }

        // Plot the solution.
        Linearizer l(space);
        char filename[100];
        sprintf(filename, "solution_%g.gp", current_time);
        l.plot_solution(filename);
        info("Solution %s written.", filename);

        current_time += TAU;
    }

    // Plot the resulting space.
    space->plot("space.gp");

    // Cleaning
    delete dp;
    delete rhs;
    delete solver;
    delete[] coeff_vec;
    delete space;
    delete matrix;

    info("Done.");
    return 0;
}
开发者ID:B-Rich,项目名称:hermes-legacy,代码行数:94,代码来源:main.cpp

示例15: main

int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("../square_quad.mesh", &mesh);

  // Perform initial mesh refinement.
  for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();


  // Set exact solution.
  CustomExactSolution exact(&mesh, ALPHA);

  // Define right-hand side.
  CustomRightHandSide rhs(ALPHA);

  // Initialize the weak formulation.
  CustomWeakForm wf(&rhs);

  // Initialize boundary conditions
  DefaultEssentialBCNonConst bc(BDY_DIRICHLET, &exact);
  EssentialBCs bcs(&bc);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof, graph_cpu, graph_dof_exact, graph_cpu_exact;

  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = Space::construct_refined_space(&space);

    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Assemble the reference problem.
    info("Solving on reference mesh.");
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();

    // Solve the linear system of the reference problem. If successful, obtain the solution.
    Solution ref_sln;
    if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln);
    else error ("Matrix solver failed.\n");

    // Time measurement.
    cpu_time.tick();

    // Project the fine mesh solution onto the coarse mesh.
    Solution sln;
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate and exact error.");
    Adapt* adaptivity = new Adapt(&space);
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln) * 100;

    // Calculate exact error.
    double err_exact_rel = hermes2d.calc_rel_error(&sln, &exact, HERMES_H1_NORM) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d", Space::get_num_dofs(&space), Space::get_num_dofs(ref_space));
    info("err_est_rel: %g%%, err_exact_rel: %g%%", err_est_rel, err_exact_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space::get_num_dofs(&space), err_est_rel);
    graph_dof.save("conv_dof_est.dat");
    graph_cpu.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu.save("conv_cpu_est.dat");
    graph_dof_exact.add_values(Space::get_num_dofs(&space), err_exact_rel);
    graph_dof_exact.save("conv_dof_exact.dat");
    graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel);
    graph_cpu_exact.save("conv_cpu_exact.dat");

//.........这里部分代码省略.........
开发者ID:Zhonghua,项目名称:hermes-dev,代码行数:101,代码来源:main.cpp


注:本文中的DiscreteProblem类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。