本文整理汇总了C++中Digraph::source方法的典型用法代码示例。如果您正苦于以下问题:C++ Digraph::source方法的具体用法?C++ Digraph::source怎么用?C++ Digraph::source使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Digraph
的用法示例。
在下文中一共展示了Digraph::source方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ILT_Helper
static void ILT_Helper( Digraph& dg, ILT_EdgeDataMap2& datas, ArcFilter& ef, NodeFilter& nf, EdgeArray& sortedAirEdges, IntMap& cmap )
{
// 记录用风地点的始末搜索得到的count
AcDbIntArray sAirs, tAirs;
double st = Timer::rdtscSeconds();
// 显示排序后,用风地点的顺序编号
//DisplayAirEdgeNum(sortedAirEdges, datas);
int len = sortedAirEdges.length();
acutPrintf( _T( "\n用风地点个数:%d" ), len );
for( int i = 0; i < len; i++ )
{
Digraph::Arc e = sortedAirEdges[i];
Digraph::Node u = dg.source( e );
Digraph::Node v = dg.target( e );
sAirs.append( CountInFlowNodes( dg, ef, nf, u, cmap ) );
tAirs.append( CountOutFlowNodes( dg, ef, nf, v, cmap ) );
//acutPrintf(_T("\n第%d个用风地点【始节点】=%d 【末节点】=%d"), i, sAirs[i], tAirs[i]);
}
/*for(Digraph::NodeIt n(dg); n!=INVALID; ++n)
{
if(nf[n] && imap[n]==0) imap[n] = 1;
}*/
double et = Timer::rdtscSeconds();
acutPrintf( _T( "\n第1次正反dfs查找耗费时间:%.5f" ), et - st );
// 显示分支的始末节点的cmap值(测试用)
//DisplayEdgeCMapValue(dg, sortedAirEdges, datas, cmap, sAirs, tAirs);
//assert(sAirs.length() == len);
//assert(tAirs.length() == len);
st = Timer::rdtscSeconds();
for( int i = len - 1; i >= 0; i-- )
{
Digraph::Arc e = sortedAirEdges[i];
Digraph::Node u = dg.source( e );
Digraph::Node v = dg.target( e );
MinusInFlowNodes( dg, ef, nf, u, cmap, sAirs[i] );
PlusOutFlowNodes( dg, ef, nf, v, cmap, tAirs[i] );
}
et = Timer::rdtscSeconds();
acutPrintf( _T( "\n第2次正反dfs查找耗费时间:%.5f" ), et - st );
/*
* 处理完之后,可能出现一些分支的始节点(或末节点)的cmap=0
* 而末节点(或始节点)的cmap不等于0
* 这些分支中可能有部分分支也可视为主要进回风之间的联络巷
*/
// 显示分支的始末节点的cmap值(测试用)
//DisplayEdgeCMapValue(dg, sortedAirEdges, datas, cmap, sAirs, tAirs);
}
示例2: PathFromPred
//根据前向节点查找路径
static bool PathFromPred(Digraph& dg, Digraph::Node s, Digraph::Node t, PredMap& pred, EdgeArray& p)
{
EdgeArray pp;
Digraph::Node u = t;
while(pred[u] != INVALID)
{
Digraph::Node v = pred[u];
if(v != INVALID)
{
for(Digraph::InArcIt e(dg,u);e!=INVALID;++e)
{
if(dg.source(e) == v)
{
pp.push_back(e);
}
}
}
u = v;
}
if(u == s)
{
//得到的路径是反向的,需要逆转过来
GraphUtils::ReverseArray(pp);
}
p = pp;
return (u == s);
}
示例3: PrintVN
static void PrintVN(Digraph& dg, EdgeIdMap& eid, NodeIdMap& nid, VNO_EdgeMap& ed, VNO_FanMap&fd, VNO_NodeMap& nd, double Q)
{
cout<<"初始总风量:"<<Q<<endl;
cout<<setiosflags(ios::left)<<setw(12);
cout<<"ID\t分支(始节点,末节点)\t风阻\t调节风阻\t风量\t始节点压力\t末节点压力"<<endl;
for(Digraph::ArcIt e(dg); e!=INVALID; ++e)
{
int id = eid[e];
Digraph::Node u = dg.source(e);
Digraph::Node v = dg.target(e);
double r = ed[e]->r;
double q = ed[e]->q;
double delta_r = ed[e]->delta_r;
cout<<dg.id(e)<<"\t"<<"e("<<id<<")=("<<nid[u]<<","<<nid[v]<<")"<<"\t"
<<"r(e"<<id<<")="<<r<<"\t"
<<"d_r(e"<<id<<")="<<delta_r<<"\t"
<<"q(e"<<id<<")="<<q<<"\t"
<<"p(v"<<nid[u]<<")="<<nd[u]->p<<"\t"
<<"p(v"<<nid[v]<<")="<<nd[v]->p<<endl;
if(fd[e]!=0)
{
cout<<"\t-->分支e"<<id<<"上有风机\n"
<<fd[e]->a0<<" "
<<fd[e]->a1<<" "
<<fd[e]->a2<<" "
<<endl;
}
if(ed[e]->fq > 0)
{
cout<<"\t-->分支e"<<id<<"固定风量:"<<ed[e]->fq<<endl;
}
}
}
示例4: SortAirEdges
// 使用宽度优先搜索BFS计算最短距离
static void SortAirEdges( Digraph& dg, ArcFilter& ef, Digraph::Node s, Digraph::Node t, const EdgeArray& airEdges, EdgeArray& es )
{
AFGraph afg( dg, ef );
Bfs<AFGraph> aBfs( afg );
aBfs.run( s );
//if(!aDfs.reached(t)) return; // s->t不可达
typedef ReverseDigraph<AFGraph> RDigraph;
RDigraph rdg( afg );
Bfs<RDigraph> bBfs( rdg );
bBfs.run( t );
//if(!bDfs.reached(s)) return;
typedef std::vector<AirEdgeDist> AirEdgeArray;
AirEdgeArray aes;
int len = airEdges.length();
for( int i = 0; i < len; i++ )
{
Digraph::Arc e = airEdges[i];
Digraph::Node u = dg.source( e );
Digraph::Node v = dg.target( e );
AirEdgeDist aed;
aed.e = e;
if( aBfs.reached( u ) )
{
aed.sd = aBfs.dist( u );
}
else
{
acutPrintf( _T( "\n第%d个用风地点【始点】不可达" ), i );
}
if( bBfs.reached( v ) )
{
aed.td = bBfs.dist( v );
}
else
{
acutPrintf( _T( "\n第%d个用风地点【末点】不可达" ), i );
}
aes.push_back( aed );
}
// 降序排序
std::sort( aes.begin(), aes.end() );
for( AirEdgeArray::iterator itr = aes.begin(); itr != aes.end(); itr++ )
{
es.append( itr->e );
}
}
示例5: FindStation_Helper
static void FindStation_Helper( Digraph& dg, Digraph::Arc e, EdgeArray& es, bool searchStart = true, bool searchEnd = true )
{
if( searchStart ) // 是否需要从分支的始节点搜索
{
FindStationFromNode( dg, dg.source( e ), es, true );
}
if( searchEnd ) // 是否需要从分支的末节点搜索
{
FindStationFromNode( dg, dg.target( e ), es, false );
}
}
示例6: BuildNodeFilter
// 标记用风地点的始末节点和网络源汇节点
// 在搜索的时候,不搜索这些节点
static void BuildNodeFilter( Digraph& dg, EdgeArray& airEdges, Digraph::Node s, Digraph::Node t, NodeFilter& nf )
{
int len = airEdges.length();
acutPrintf( _T( "\n用风地点个数:%d" ), len );
for( int i = 0; i < len; i++ )
{
Digraph::Arc e = airEdges[i];
nf[dg.source( e )] = false;
nf[dg.target( e )] = false;
}
nf[s] = false;
nf[t] = false;
// 原始网络的源点和汇点也要标记
for( Digraph::OutArcIt e( dg, s ); e != INVALID; ++e )
{
nf[dg.target( e )] = false;
}
for( Digraph::InArcIt e( dg, t ); e != INVALID; ++e )
{
nf[dg.source( e )] = false;
}
}
示例7: FindILTEdges
static void FindILTEdges( Digraph& dg, ILT_EdgeDataMap2& datas, IntMap& cmap, EdgeArray& edges )
{
for( Digraph::ArcIt e( dg ); e != INVALID; ++e )
{
if( datas[e]->et == ET_VIRTUAL ) continue;
Digraph::Node u = dg.source( e );
Digraph::Node v = dg.target( e );
// 排除直接相连的分支
// 联络巷分支的始节点出度必须大于1,末节点的入度必须大于1
if( countOutArcs( dg, u ) <= 1 || countInArcs( dg, v ) <= 1 ) continue;
if( cmap[u]*cmap[v] < 0 ) edges.append( e );
}
}
示例8: FilterILTEdge
static void FilterILTEdge( Digraph& dg, IntMap& imap, ArcFilter& ef )
{
// 查找联络巷
for( Digraph::ArcIt e( dg ); e != INVALID; ++e )
{
Digraph::Node u = dg.source( e );
Digraph::Node v = dg.target( e );
// 排除直接相连的分支
// 联络巷分支的始节点出度必须大于1,末节点的入度必须大于1
if( countOutArcs( dg, u ) <= 1 || countInArcs( dg, v ) <= 1 ) continue;
if( imap[u]*imap[v] < 0 ) ef[e] = false;
}
}
示例9: DisplayEdgeCMapValue
static void DisplayEdgeCMapValue( Digraph& dg, EdgeArray& sortedAirEdges,
ILT_EdgeDataMap2& datas, IntMap& cmap,
AcDbIntArray& sAirs, AcDbIntArray& tAirs )
{
AcDbObjectIdArray objIds;
AcDbIntArray ivs, ivs2;
for( Digraph::ArcIt e( dg ); e != INVALID; ++e )
{
objIds.append( datas[e]->objId );
int pos = sortedAirEdges.find( e );
if( pos != -1 )
{
ivs.append( sAirs[pos] );
ivs2.append( tAirs[pos] );
}
else
{
ivs.append( cmap[dg.source( e )] );
ivs2.append( cmap[dg.target( e )] );
}
}
DisplayIntValue2( objIds, ivs, ivs2 );
}
示例10: Init_IMap
static void Init_IMap( Digraph& dg, ArcFilter& ef, NodeFilter& nf, EdgeArray& airEdges, IntMap& imap )
{
AFGraph afg( dg, ef );
for( Digraph::NodeIt n( dg ); n != INVALID; ++n )
{
imap[n] = ( nf[n] ? 1 : 0 ); // 默认所有节点位于进风区
}
int len = airEdges.length();
for( int i = 0; i < len; i++ )
{
Digraph::Arc e = airEdges[i];
Digraph::Node u = dg.source( e );
Digraph::Node v = dg.target( e );
Dfs<AFGraph> bDfs( afg );
bDfs.run( v );
for( Digraph::NodeIt n( dg ); n != INVALID; ++n )
{
if( nf[n] && bDfs.reached( n ) ) imap[n] = -1; // 节点位于回风区
}
}
}
示例11: MaxKeyEdgePass_Match
//指定一些特殊分支,要求搜索一条路径时尽可能多的通过这些特殊分支
//例如:搜索一条串联通风路径(通过多个用风地点的一条路径)
//采用二分匹配实现失败!!!
static bool MaxKeyEdgePass_Match(Digraph& dg, EdgeArray& airEdges, Digraph::Node s, Digraph::Node t, EdgeArray& mpp)
{
EdgeArray p;
if(!GraphUtils::DFS_Path(dg, s, t, p)) return false;
typedef Digraph::NodeMap<Digraph::Node> DDMap;
DDMap ddm(dg, INVALID);
NodeArray left, right;
left.push_back(s); right.push_back(t);
for(size_t i=0;i<airEdges.size();i++)
{
Digraph::Arc e = airEdges[i];
Digraph::Node u = dg.source(e);
Digraph::Node v = dg.target(e);
p.clear();
bool ret = GraphUtils::DFS_Path(dg, v, t, p);
if(!ret) continue;
p.clear();
ret = GraphUtils::DFS_Path(dg, s, u, p);
if(!ret) continue;
left.push_back(v); right.push_back(u);
}
//cout<<"left="<<left.size()<<" right="<<right.size()<<endl;
ListGraph g;
ListGraph::NodeMap<Digraph::Node> udm(g);
typedef std::vector<ListGraph::Node> UNodeArray;
UNodeArray left_nodes, right_nodes;
typedef std::map<Digraph::Node, ListGraph::Node> DUMap;
DUMap dum;
//添加节点
for(size_t i=0;i<left.size();i++)
{
Digraph::Node u = left[i];
ListGraph::Node uu = g.addNode();
udm[uu] = u; left_nodes.push_back(uu);
//cout<<dg.id(u)<< " ";
}
//cout<<endl;
for(size_t i=0;i<right.size();i++)
{
Digraph::Node u = right[i];
ListGraph::Node uu = g.addNode();
udm[uu] = u; right_nodes.push_back(uu);
//cout<<dg.id(u)<<" ";
}
//cout<<endl;
for(size_t i=0;i<right.size();i++)
{
Digraph::Node u = right[i];
ListGraph::Node uu = g.addNode();
udm[uu] = u; left_nodes.push_back(uu);
//cout<<dg.id(u)<< " ";
}
//cout<<endl;
for(size_t i=0;i<left.size();i++)
{
Digraph::Node u = left[i];
ListGraph::Node uu = g.addNode();
udm[uu] = u; right_nodes.push_back(uu);
//cout<<dg.id(u)<< " ";
}
//cout<<endl;
//添加分支
for(size_t i=0;i<left_nodes.size();i++)
{
ListGraph::Node uv = left_nodes[i];
for(size_t j=0;j<right_nodes.size();j++)
{
ListGraph::Node uu = right_nodes[j];
Digraph::Node v = udm[uv];
Digraph::Node u = udm[uu];
if(u == v) continue;
p.clear();
if(GraphUtils::DFS_Path(dg, v, u, p))
{
//ListGraph::Node uv = left_nodes[i];
//ListGraph::Node uu = right_nodes[j];
ListGraph::Edge e = g.addEdge(uu,uv);
//cout<<"二分图:"<<dg.id(v)<<"<-->"<<dg.id(u)<<endl;
}
}
}
//二分图最大匹配
MaxMatching<ListGraph> mm(g);
mm.run();
//cout<<"分支数:"<<countEdges(g)<<" 匹配数:"<<mm.matchingSize()<<endl;
for(ListGraph::EdgeIt e(g);e!=INVALID;++e)
//.........这里部分代码省略.........
示例12: MaxKeyEdgePass_CPM
//指定一些特殊分支,要求搜索一条路径时尽可能多的通过这些特殊分支
//例如:搜索一条串联通风路径(通过多个用风地点的一条路径)
//使用关键路径算法实现
static bool MaxKeyEdgePass_CPM(Digraph& dg, EdgeArray& airEdges, Digraph::Node s, Digraph::Node t, EdgeArray& mpp)
{
EdgeArray p;
if(!GraphUtils::DFS_Path(dg, s, t, p)) return false;
NodeArray left, right;
left.push_back(s); right.push_back(t);
for(size_t i=0;i<airEdges.size();i++)
{
Digraph::Arc e = airEdges[i];
Digraph::Node u = dg.source(e);
Digraph::Node v = dg.target(e);
p.clear();
bool ret = GraphUtils::DFS_Path(dg, v, t, p);
if(!ret) continue;
p.clear();
ret = GraphUtils::DFS_Path(dg, s, u, p);
if(!ret) continue;
left.push_back(v); right.push_back(u);
}
//cout<<"left="<<left.size()<<" right="<<right.size()<<endl;
//构造新的图
Digraph new_dg;
//记录新图节点和原始图节点的关系
Digraph::NodeMap<Digraph::Node> udm(new_dg);
//记录原始图节点与新构造图节点的关系
typedef std::map<Digraph::Node, Digraph::Node> DDMap;
DDMap ddm;
//左右节点数组
NodeArray left_nodes, right_nodes;
//添加节点
for(size_t i=0;i<left.size();i++)
{
Digraph::Node u = left[i], uu = INVALID;
DDMap::iterator itr = ddm.find(u);
if(itr == ddm.end())
{
uu = new_dg.addNode();
}
else
{
uu = itr->second;
}
udm[uu] = u; ddm[u] = uu;
left_nodes.push_back(uu);
//cout<<dg.id(u)<< " ";
}
//cout<<endl;
for(size_t i=0;i<right.size();i++)
{
Digraph::Node u = right[i], uu = INVALID;
DDMap::iterator itr = ddm.find(u);
if(itr == ddm.end())
{
uu = new_dg.addNode();
}
else
{
uu = itr->second;
}
udm[uu] = u; ddm[u] = uu;
right_nodes.push_back(uu);
//cout<<dg.id(u)<<" ";
}
//cout<<endl;
//添加分支
for(size_t i=0;i<left_nodes.size();i++)
{
Digraph::Node uv = left_nodes[i];
for(size_t j=0;j<right_nodes.size();j++)
{
Digraph::Node uu = right_nodes[j];
Digraph::Node v = udm[uv];
Digraph::Node u = udm[uu];
if(u == v || (v == s && u == t)) continue;
p.clear();
if(GraphUtils::DFS_Path(dg, v, u, p))
{
Digraph::Arc e = new_dg.addArc(uv,uu);
//cout<<"新图:"<<dg.id(v)<<"<-->"<<dg.id(u)<<endl;
}
}
}
for(size_t i=0;i<left_nodes.size();i++)
{
Digraph::Node uv = left_nodes[i];
Digraph::Node uu = right_nodes[i];
Digraph::Node v = udm[uv];
Digraph::Node u = udm[uu];
if(u == v || u == t) continue;
//.........这里部分代码省略.........
示例13: main
int main(int argc, char *argv[])
{
int nt;
Digraph g; // graph declaration
string digraph_steiner_filename;
DiNodeName vname(g); // name of graph nodes
Digraph::NodeMap<double> px(g),py(g); // xy-coodinates for each node
Digraph::NodeMap<int> vcolor(g);// color of nodes
Digraph::ArcMap<int> ecolor(g); // color of edges
ArcWeight lpvar(g); // used to obtain the contents of the LP variables
ArcWeight weight(g); // edge weights
Digraph::ArcMap<GRBVar> x(g); // binary variables for each arc
vector <DiNode> V;
int seed=0;
srand48(1);
// uncomment one of these lines to change default pdf reader, or insert new one
//set_pdfreader("open"); // pdf reader for Mac OS X
//set_pdfreader("xpdf"); // pdf reader for Linux
//set_pdfreader("evince"); // pdf reader for Linux
// double cutoff; // used to prune non promissing branches (of the B&B tree)
if (argc!=2) {cout<< endl << "Usage: "<< argv[0]<<" <digraph_steiner_filename>"<< endl << endl;
cout << "Examples: " << argv[0] << " gr_berlin52.steiner" << endl;
cout << " " << argv[0] << " gr_usa48.steiner" << endl << endl;
exit(0);}
digraph_steiner_filename = argv[1];
//int time_limit = 3600; // solution must be obtained within time_limit seconds
GRBEnv env = GRBEnv();
GRBModel model = GRBModel(env);
model.getEnv().set(GRB_IntParam_LazyConstraints, 1);
model.getEnv().set(GRB_IntParam_Seed, seed);
model.set(GRB_StringAttr_ModelName, "Oriented Steiner Tree with GUROBI"); // prob. name
model.set(GRB_IntAttr_ModelSense, GRB_MINIMIZE); // is a minimization problem
ReadListDigraphSteiner(digraph_steiner_filename,g,vname,weight,px,py,1,nt,V);
Steiner_Instance T(g,vname,px,py,weight,nt,V);
//for (DiNodeIt v(g);v!=INVALID;++v){ if(v==T.V[0])vcolor[v]=RED; else vcolor[v]=BLUE;}
//for (int i=1;i<T.nt;i++) vcolor[T.V[i]] = MAGENTA;
//for (ArcIt e(g); e != INVALID; ++e) ecolor[e] = BLUE;
//ViewListDigraph(g,vname,px,py,vcolor,ecolor,"Triangulated graph");
// Generate the binary variables and the objective function
// Add one binary variable for each edge and set its cost in the objective function
for (Digraph::ArcIt e(g); e != INVALID; ++e) {
char name[100];
sprintf(name,"X_%s_%s",vname[g.source(e)].c_str(),vname[g.target(e)].c_str());
x[e] = model.addVar(0.0, 1.0, weight[e],GRB_BINARY,name); }
model.update(); // run update to use model inserted variables
try {
//if (time_limit >= 0) model.getEnv().set(GRB_DoubleParam_TimeLimit,time_limit);
//model.getEnv().set(GRB_DoubleParam_ImproveStartTime,10); //try better sol. aft. 10s
// if (cutoff > 0) model.getEnv().set(GRB_DoubleParam_Cutoff, cutoff );
ConnectivityCuts cb = ConnectivityCuts(T , x);
model.setCallback(&cb);
model.update();
//model.write("model.lp"); system("cat model.lp");
model.optimize();
double soma=0.0;
for (DiNodeIt v(g);v!=INVALID;++v) vcolor[v]=BLUE; // all nodes BLUE
for (int i=0;i<T.nt;i++) vcolor[T.V[i]]=MAGENTA; // change terminals to MAGENTA
vcolor[T.V[0]]=RED; // change root to RED
for (Digraph::ArcIt e(g); e!=INVALID; ++e) {
lpvar[e] = x[e].get(GRB_DoubleAttr_X);
if (lpvar[e] > 1.0 - EPS) { soma += weight[e]; ecolor[e] = RED; }
else ecolor[e] = NOCOLOR; }
cout << "Steiner Tree Value = " << soma << endl;
ViewListDigraph(g,vname,px,py,vcolor,ecolor,
"Steiner Tree cost in graph with "+IntToString(T.nnodes)+
" nodes and "+IntToString(T.nt)+" terminals: "+DoubleToString(soma));
} catch (...) {cout << "Error during callback..." << endl; }
return 0;
}
示例14: hd
Node TarjanHD::hd(const Digraph& g,
const DoubleArcMap& w,
SubDigraph& subG,
NodeNodeMap& mapToOrgG,
NodeNodeMap& G2T,
const ArcList& sortedArcs,
int i)
{
assert(i >= 0);
int m = static_cast<int>(sortedArcs.size());
assert(m == lemon::countArcs(subG));
int r = m - i;
if (r == 0 || r == 1)
{
// add to _T a subtree rooted at node r,
// labeled with w(e_m) and having n children labeled with
// the vertices of subG
Node root = _T.addNode();
_label[root] = w[sortedArcs.back()];
_T2OrgG[root] = lemon::INVALID;
for (SubNodeIt v(subG); v != lemon::INVALID; ++v)
{
Node vv = G2T[v];
if (vv == lemon::INVALID)
{
vv = _T.addNode();
_label[vv] = -1;
if (mapToOrgG[v] != lemon::INVALID)
{
_orgG2T[mapToOrgG[v]] = vv;
_T2OrgG[vv] = mapToOrgG[v];
}
}
_T.addArc(vv, root);
}
return root;
}
else
{
int j = (i + m) % 2 == 0 ? (i + m) / 2 : (i + m) / 2 + 1;
// remove arcs j+1 .. m
ArcListIt arcEndIt, arcIt = sortedArcs.begin();
for (int k = 1; k <= m; ++k)
{
if (k == j + 1)
{
arcEndIt = arcIt;
}
if (k > j)
{
subG.disable(*arcIt);
}
++arcIt;
}
// compute SCCs
IntNodeMap comp(g, -1);
int numSCC = lemon::stronglyConnectedComponents(subG, comp);
if (numSCC == 1)
{
ArcList newSortedArcs(sortedArcs.begin(), arcEndIt);
// _subG is strongly connected
return hd(g, w, subG, mapToOrgG, G2T, newSortedArcs, i);
}
else
{
// determine strongly connected components
NodeHasher<Digraph> hasher(g);
NodeSetVector components(numSCC, NodeSet(42, hasher));
for (SubNodeIt v(subG); v != lemon::INVALID; ++v)
{
components[comp[v]].insert(v);
}
NodeVector roots(numSCC, lemon::INVALID);
double w_i = i > 0 ? w[getArcByRank(sortedArcs, i)] : -std::numeric_limits<double>::max();
for (int k = 0; k < numSCC; ++k)
{
const NodeSet& component = components[k];
if (component.size() > 1)
{
// construct new sorted arc list for component: O(m) time
ArcList newSortedArcs;
for (ArcListIt arcIt = sortedArcs.begin(); arcIt != arcEndIt; ++arcIt)
{
Node u = g.source(*arcIt);
Node v = g.target(*arcIt);
bool u_in_comp = component.find(u) != component.end();
bool v_in_comp = component.find(v) != component.end();
if (u_in_comp && v_in_comp)
{
newSortedArcs.push_back(*arcIt);
}
//.........这里部分代码省略.........
示例15: constructCondensedGraph
int TarjanHD::constructCondensedGraph(const Digraph& g,
const DoubleArcMap& w,
const NodeNodeMap& mapToOrgG,
const NodeNodeMap& G2T,
const ArcList& sortedArcs,
const IntNodeMap& comp,
const NodeSetVector& components,
const NodeVector& roots,
const int j,
Digraph& c,
DoubleArcMap& ww,
NodeNodeMap& mapCToOrgG,
NodeNodeMap& C2T,
ArcList& newSortedArcs)
{
// construct the condensed graph:
// each strongly connected component is collapsed into a single node, and
// from the resulting sets of multiple arcs retain only those with minimum weight
lemon::DynArcLookUp<Digraph> lookUpArc(c);
// first construct the nodes
const size_t numSCC = components.size();
NodeVector nodesOfC(numSCC, lemon::INVALID);
for (size_t k = 0; k < numSCC; ++k)
{
Node v = nodesOfC[k] = c.addNode();
if (components[k].size() == 1)
{
mapCToOrgG[v] = mapToOrgG[*components[k].begin()];
C2T[v] = G2T[*components[k].begin()];
}
else
{
mapCToOrgG[v] = lemon::INVALID;
C2T[v] = roots[k];
}
}
// next construct the arcs: O(m) time
for (ArcListIt arcIt = sortedArcs.begin(); arcIt != sortedArcs.end(); ++arcIt)
{
Arc a = *arcIt;
Node u = g.source(a);
Node v = g.target(a);
Node uu = nodesOfC[comp[u]];
Node vv = nodesOfC[comp[v]];
if (uu != vv)
{
Arc aa = lookUpArc(uu, vv);
if (aa == lemon::INVALID)
{
aa = c.addArc(uu, vv);
newSortedArcs.push_back(aa);
ww[aa] = w[a];
}
#ifdef DEBUG
else
{
assert(w[a] > ww[aa]);
}
#endif
}
}
return get_i(newSortedArcs, ww, w[getArcByRank(sortedArcs, j)]);
}