本文整理汇总了C++中DiffContext::get_elem_solution_accel方法的典型用法代码示例。如果您正苦于以下问题:C++ DiffContext::get_elem_solution_accel方法的具体用法?C++ DiffContext::get_elem_solution_accel怎么用?C++ DiffContext::get_elem_solution_accel使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DiffContext
的用法示例。
在下文中一共展示了DiffContext::get_elem_solution_accel方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: _general_residual
bool NewmarkSolver::_general_residual (bool request_jacobian,
DiffContext & context,
ResFuncType mass,
ResFuncType damping,
ResFuncType time_deriv,
ResFuncType constraint)
{
unsigned int n_dofs = context.get_elem_solution().size();
// We might need to save the old jacobian in case one of our physics
// terms later is unable to update it analytically.
DenseMatrix<Number> old_elem_jacobian(n_dofs, n_dofs);
// Local velocity at old time step
DenseVector<Number> old_elem_solution_rate(n_dofs);
for (unsigned int i=0; i != n_dofs; ++i)
old_elem_solution_rate(i) =
old_solution_rate(context.get_dof_indices()[i]);
// The user is computing the initial acceleration
// So upstream we've swapped _system.solution and _old_local_solution_accel
// So we need to give the context the correct entries since we're solving for
// acceleration here.
if( _is_accel_solve )
{
// System._solution is actually the acceleration right now so we need
// to reset the elem_solution to the right thing, which in this case
// is the initial guess for displacement, which got swapped into
// _old_solution_accel vector
DenseVector<Number> old_elem_solution(n_dofs);
for (unsigned int i=0; i != n_dofs; ++i)
old_elem_solution(i) =
old_solution_accel(context.get_dof_indices()[i]);
context.elem_solution_derivative = 0.0;
context.elem_solution_rate_derivative = 0.0;
context.elem_solution_accel_derivative = 1.0;
// Acceleration is currently the unknown so it's already sitting
// in elem_solution() thanks to FEMContext::pre_fe_reinit
context.get_elem_solution_accel() = context.get_elem_solution();
// Now reset elem_solution() to what the user is expecting
context.get_elem_solution() = old_elem_solution;
context.get_elem_solution_rate() = old_elem_solution_rate;
// The user's Jacobians will be targeting derivatives w.r.t. u_{n+1}.
// Although the vast majority of cases will have the correct analytic
// Jacobians in this iteration, since we reset elem_solution_derivative*,
// if there are coupled/overlapping problems, there could be
// mismatches in the Jacobian. So we force finite differencing for
// the first iteration.
request_jacobian = false;
}
// Otherwise, the unknowns are the displacements and everything is straight
// foward and is what you think it is
else
{
if (request_jacobian)
old_elem_jacobian.swap(context.get_elem_jacobian());
// Local displacement at old timestep
DenseVector<Number> old_elem_solution(n_dofs);
for (unsigned int i=0; i != n_dofs; ++i)
old_elem_solution(i) =
old_nonlinear_solution(context.get_dof_indices()[i]);
// Local acceleration at old time step
DenseVector<Number> old_elem_solution_accel(n_dofs);
for (unsigned int i=0; i != n_dofs; ++i)
old_elem_solution_accel(i) =
old_solution_accel(context.get_dof_indices()[i]);
// Convenience
libMesh::Real dt = _system.deltat;
context.elem_solution_derivative = 1.0;
// Local velocity at current time step
// v_{n+1} = gamma/(beta*Delta t)*(x_{n+1}-x_n)
// + (1-(gamma/beta))*v_n
// + (1-gamma/(2*beta))*(Delta t)*a_n
context.elem_solution_rate_derivative = (_gamma/(_beta*dt));
context.get_elem_solution_rate() = context.get_elem_solution();
context.get_elem_solution_rate() -= old_elem_solution;
context.get_elem_solution_rate() *= context.elem_solution_rate_derivative;
context.get_elem_solution_rate().add( (1.0-_gamma/_beta), old_elem_solution_rate);
context.get_elem_solution_rate().add( (1.0-_gamma/(2.0*_beta))*dt, old_elem_solution_accel);
// Local acceleration at current time step
// a_{n+1} = (1/(beta*(Delta t)^2))*(x_{n+1}-x_n)
// - 1/(beta*Delta t)*v_n
// - (1/(2*beta)-1)*a_n
context.elem_solution_accel_derivative = 1.0/(_beta*dt*dt);
context.get_elem_solution_accel() = context.get_elem_solution();
//.........这里部分代码省略.........