当前位置: 首页>>代码示例>>C++>>正文


C++ DiagonalMatrix::i方法代码示例

本文整理汇总了C++中DiagonalMatrix::i方法的典型用法代码示例。如果您正苦于以下问题:C++ DiagonalMatrix::i方法的具体用法?C++ DiagonalMatrix::i怎么用?C++ DiagonalMatrix::i使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DiagonalMatrix的用法示例。


在下文中一共展示了DiagonalMatrix::i方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: pseudoInverse

Matrix BaseController::pseudoInverse(const Matrix M)
{
   Matrix result;
   //int rows = this->rows();
   //int cols = this->columns();
   // calculate SVD decomposition
   Matrix U,V;
   DiagonalMatrix D;
   NEWMAT::SVD(M,D,U,V, true, true);
   Matrix Dinv = D.i();
   result = V * Dinv * U.t();
   return result;
}
开发者ID:janfrs,项目名称:kwc-ros-pkg,代码行数:13,代码来源:base_controller.cpp

示例2: getGeneralizedInverse

void getGeneralizedInverse(Matrix& G, Matrix& Gi) {
#ifdef DEBUG
  cout << "\n\ngetGeneralizedInverse - Singular Value\n";
#endif  

  // Singular value decomposition method
  
  // do SVD
  Matrix U, V;
  DiagonalMatrix D;
  SVD(G,D,U,V);            // X = U * D * V.t()
  
#ifdef DEBUG
  cout << "D:\n";
  cout << setw(9) << setprecision(6) << (D);
  cout << "\n\n";
#endif
  
  DiagonalMatrix Di;
  Di << D.i();
  
#ifdef DEBUG
  cout << "Di:\n";
  cout << setw(9) << setprecision(6) << (Di);
  cout << "\n\n";
#endif
  

  int i=Di.Nrows();
  for (; i>=1; i--) {
    if (Di(i) > 1000.0) {
      Di(i) = 0.0;
    }
  }
  
#ifdef DEBUG
  cout << "Di with biggies zeroed out:\n";
  cout << setw(9) << setprecision(6) << (Di);
  cout << "\n\n";
#endif
  
  //Matrix Gi;
  Gi << (U * (Di * V.t()));
  
  return;
}
开发者ID:VictorMion,项目名称:vmd-cvs-github,代码行数:46,代码来源:hesstrans.C

示例3: test5

void test5(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 5 - singular value\n";

   // Singular value decomposition method
 
   // load data - 1s into col 1 of matrix
   int npred1 = npred+1;
   Matrix X(nobs,npred1); ColumnVector Y(nobs);
   X.Column(1) = 1.0;  X.Column(2) << x1;  X.Column(3) << x2;  Y << y;

   // do SVD
   Matrix U, V; DiagonalMatrix D;
   SVD(X,D,U,V);                              // X = U * D * V.t()
   ColumnVector Fitted = U.t() * Y;
   ColumnVector A = V * ( D.i() * Fitted );
   Fitted = U * Fitted;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // get variances of estimates
   D << V * (D * D).i() * V.t();

   // Get diagonals of Hat matrix
   DiagonalMatrix Hat;  Hat << U * U.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   ColumnVector SE(npred1);
   for (int i=1; i<=npred1; i++) SE(i) = sqrt(D(i)*ResVar);
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) << 
      (X.Columns(2,3) | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
开发者ID:151706061,项目名称:sofa,代码行数:36,代码来源:example.cpp

示例4: covarMat

/*
 * Fits a weighted cubic regression on predictor(s)
 *
 * @param contrast - want to predict this value per snp
 * @param strength - covariate of choice
 * @param weights - weight of data points for this genotype
 * @param Predictor - output, prediction function coefficients
 * @param Predicted - output, predicted contrast per snp
 */
void
FitWeightedCubic(const std::vector<double> &contrast,
                 const std::vector<double> &strength,
                 const std::vector<double> &weights,
                 std::vector<double> &Predictor,
                 std::vector<double> &Predicted) {

  	// Singular value decomposition method
	unsigned int i;
	unsigned int nobs;
	unsigned int npred;
	npred = 3+1;
	nobs= contrast.size();

	// convert double into doubles to match newmat
  vector<Real> tmp_vec(nobs);
  Real* tmp_ptr = &tmp_vec[0];
	vector<Real> obs_vec(nobs);
	Real *obs_ptr = &obs_vec[0];
	vector<Real> weight_vec(nobs);

  Matrix covarMat(nobs,npred);
	ColumnVector observedVec(nobs);

	// fill in the data
	// modified by weights
	for (i=0; i<nobs; i++)
		weight_vec[i] = sqrt(weights[i]);

  	// load data - 1s into col 1 of matrix
	for (i=0; i<nobs; i++)
		tmp_vec[i] = weight_vec[i];
  	covarMat.Column(1) << tmp_ptr;
	for (i=0; i<nobs; i++)
		tmp_vec[i] *= strength[i];
  	covarMat.Column(2) << tmp_ptr;
	for (i=0; i<nobs; i++)
		tmp_vec[i] *= strength[i];
  	covarMat.Column(3) << tmp_ptr;
	for (i=0; i<nobs; i++)
		tmp_vec[i] *= strength[i];
  	covarMat.Column(4) << tmp_ptr;

  	for (i=0; i<nobs; i++)
		obs_vec[i] = contrast[i]*weight_vec[i];
  	observedVec << obs_ptr;

  	// do SVD
  	Matrix U, V;
  	DiagonalMatrix D;
    ColumnVector Fitted(nobs);
    ColumnVector A(npred);

  	SVD(covarMat,D,U,V);

  	Fitted = U.t() * observedVec;
  	A = V * ( D.i() * Fitted );

	// this predicts "0" for low weights
	// because of weighted regression
  	Fitted = U * Fitted;

	// this is the predictor
	Predictor.resize(npred);
	for (i=0; i<npred; i++)
		Predictor[i] = A.element(i);


  // export data back to doubles
	// and therefore this predicts "0" for low-weighted points
	// which is >not< the desired outcome!!!!
	// instead we need to predict all points at once
	// >unweighted< as output
	vector<double> Goofy;
	Predicted.resize(nobs);
  	for (i = 0; i < nobs; ++i) {
      Goofy.resize(npred);
      Goofy[0] = 1;
      Goofy[1] = strength[i];
      Goofy[2] = strength[i]*Goofy[1];
      Goofy[3] = strength[i]*Goofy[2];
      Predicted[i] = vprod(Goofy,Predictor);
  	}
}
开发者ID:einon,项目名称:affymetrix-power-tools,代码行数:93,代码来源:covarnorm.cpp

示例5: trymat8

void trymat8()
{
//   cout << "\nEighth test of Matrix package\n";
   Tracer et("Eighth test of Matrix package");
   Tracer::PrintTrace();

   int i;


   DiagonalMatrix D(6);
   for (i=1;i<=6;i++)  D(i,i)=i*i+i-10;
   DiagonalMatrix D2=D;
   Matrix MD=D;

   DiagonalMatrix D1(6); for (i=1;i<=6;i++) D1(i,i)=-100+i*i*i;
   Matrix MD1=D1;
   Print(Matrix(D*D1-MD*MD1));
   Print(Matrix((-D)*D1+MD*MD1));
   Print(Matrix(D*(-D1)+MD*MD1));
   DiagonalMatrix DX=D;
   {
      Tracer et1("Stage 1");
      DX=(DX+D1)*DX; Print(Matrix(DX-(MD+MD1)*MD));
      DX=D;
      DX=-DX*DX+(DX-(-D1))*((-D1)+DX);
      // Matrix MX = Matrix(MD1);
      // MD1=DX+(MX.t())*(MX.t()); Print(MD1);
      MD1=DX+(Matrix(MD1).t())*(Matrix(MD1).t()); Print(MD1);
      DX=D; DX=DX; DX=D2-DX; Print(DiagonalMatrix(DX));
      DX=D;
   }
   {
      Tracer et1("Stage 2");
      D.Release(2);
      D1=D; D2=D;
      Print(DiagonalMatrix(D1-DX));
      Print(DiagonalMatrix(D2-DX));
      MD1=1.0;
      Print(Matrix(MD1-1.0));
   }
   {
      Tracer et1("Stage 3");
      //GenericMatrix
      LowerTriangularMatrix LT(4);
      LT << 1 << 2 << 3 << 4 << 5 << 6  << 7 << 8 << 9 << 10;
      UpperTriangularMatrix UT = LT.t() * 2.0;
      GenericMatrix GM1 = LT;
      LowerTriangularMatrix LT1 = GM1-LT; Print(LT1);
      GenericMatrix GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1; LT1 = GM2; LT1 = LT1-LT; Print(LT1);
      GM2 = GM1*2; LT1 = GM2; LT1 = LT1-LT*2; Print(LT1);
      GM1.Release();
      GM1=GM1; LT1=GM1-LT; Print(LT1); LT1=GM1-LT; Print(LT1);
      GM1.Release();
      GM1=GM1*4; LT1=GM1-LT*4; Print(LT1);
      LT1=GM1-LT*4; Print(LT1); GM1.CleanUp();
      GM1=LT; GM2=UT; GM1=GM1*GM2; Matrix M=GM1; M=M-LT*UT; Print(M);
      Transposer(LT,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1=LT; Transposer(GM1,GM2); LT1 = LT - GM2.t(); Print(LT1);
      GM1 = LT; GM1 = GM1 + GM1; LT1 = LT*2-GM1; Print(LT1);
      DiagonalMatrix D; D << LT; GM1 = D; LT1 = GM1; LT1 -= D; Print(LT1);
      UpperTriangularMatrix UT1 = GM1; UT1 -= D; Print(UT1);
   }
   {
      Tracer et1("Stage 4");
      // Another test of SVD
      Matrix M(12,12); M = 0;
      M(1,1) = M(2,2) = M(4,4) = M(6,6) =
         M(7,7) = M(8,8) = M(10,10) = M(12,12) = -1;
      M(1,6) = M(1,12) = -5.601594;
      M(3,6) = M(3,12) = -0.000165;
      M(7,6) = M(7,12) = -0.008294;
      DiagonalMatrix D;
      SVD(M,D);
      SortDescending(D);
      // answer given by matlab
      DiagonalMatrix DX(12);
      DX(1) = 8.0461;
      DX(2) = DX(3) = DX(4) = DX(5) = DX(6) = DX(7) = 1;
      DX(8) = 0.1243;
      DX(9) = DX(10) = DX(11) = DX(12) = 0;
      D -= DX; Clean(D,0.0001); Print(D);
   }
#ifndef DONT_DO_NRIC
   {
      Tracer et1("Stage 5");
      // test numerical recipes in C interface
      DiagonalMatrix D(10);
      D << 1 << 4 << 6 << 2 << 1 << 6 << 4 << 7 << 3 << 1;
      ColumnVector C(10);
      C << 3 << 7 << 5 << 1 << 4 << 2 << 3 << 9 << 1 << 3;
      RowVector R(6);
      R << 2 << 3 << 5 << 7 << 11 << 13;
      nricMatrix M(10, 6);
      DCR( D.nric(), C.nric(), 10, R.nric(), 6, M.nric() );
      M -= D * C * R;  Print(M);

      D.ReSize(5);
      D << 1.25 << 4.75 << 9.5 << 1.25 << 3.75;
      C.ReSize(5);
//.........这里部分代码省略.........
开发者ID:Hendranus,项目名称:cvg_ardrone2_ibvs,代码行数:101,代码来源:tmt8.cpp


注:本文中的DiagonalMatrix::i方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。