当前位置: 首页>>代码示例>>C++>>正文


C++ DgmOctree类代码示例

本文整理汇总了C++中DgmOctree的典型用法代码示例。如果您正苦于以下问题:C++ DgmOctree类的具体用法?C++ DgmOctree怎么用?C++ DgmOctree使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DgmOctree类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assert

GenericIndexedCloud* CloudSamplingTools::resampleCloudWithOctree(GenericIndexedCloudPersist* theCloud, int newNumberOfPoints, RESAMPLING_CELL_METHOD resamplingMethod, GenericProgressCallback* progressCb, DgmOctree* _theOctree)
{
	assert(theCloud);

	DgmOctree* theOctree = _theOctree;
	if (!theOctree)
	{
		theOctree = new DgmOctree(theCloud);
		if (theOctree->build(progressCb) < 1)
			return 0;
	}

	//on cherche le niveau qui donne le nombre de points le plus proche de la consigne
	uchar bestLevel=theOctree->findBestLevelForAGivenCellNumber(newNumberOfPoints);

	GenericIndexedCloud* sampledCloud = resampleCloudWithOctreeAtLevel(theCloud,bestLevel,resamplingMethod,progressCb,theOctree);

	if (!_theOctree)
		delete theOctree;

	return sampledCloud;
}
开发者ID:uplusplus,项目名称:cloudcompare,代码行数:22,代码来源:CloudSamplingTools.cpp

示例2: DgmOctree

int AutoSegmentationTools::labelConnectedComponents(GenericIndexedCloudPersist* theCloud,
													unsigned char level,
													bool sixConnexity/*=false*/,
													GenericProgressCallback* progressCb/*=0*/,
													DgmOctree* inputOctree/*=0*/)
{
	if (!theCloud)
	{
		return -1;
	}

	//compute octree if none was provided
	DgmOctree* theOctree = inputOctree;
	if (!theOctree)
	{
		theOctree = new DgmOctree(theCloud);
		if (theOctree->build(progressCb) < 1)
		{
			delete theOctree;
			return -1;
		}
	}

	//we use the default scalar field to store components labels
	theCloud->enableScalarField();

	int result = theOctree->extractCCs(level, sixConnexity, progressCb);

	//remove octree if it was not provided as input
	if (theOctree && !inputOctree)
	{
		delete theOctree;
	}

	return result;
}
开发者ID:luca-penasa,项目名称:trunk,代码行数:36,代码来源:AutoSegmentationTools.cpp

示例3: DgmOctree

bool AutoSegmentationTools::frontPropagationBasedSegmentation(GenericIndexedCloudPersist* theCloud,
        ScalarType minSeedDist,
        uchar octreeLevel,
        ReferenceCloudContainer& theSegmentedLists,
        GenericProgressCallback* progressCb,
        DgmOctree* inputOctree,
        bool applyGaussianFilter,
        float alpha)
{
    unsigned numberOfPoints = (theCloud ? theCloud->size() : 0);
    if (numberOfPoints == 0)
        return false;

    //compute octree if none was provided
    DgmOctree* theOctree = inputOctree;
    if (!theOctree)
    {
        theOctree = new DgmOctree(theCloud);
        if (theOctree->build(progressCb)<1)
        {
            delete theOctree;
            return false;
        }
    }

    //on calcule le gradient (va ecraser le champ des distances)
    if (ScalarFieldTools::computeScalarFieldGradient(theCloud,true,true,progressCb,theOctree) < 0)
    {
        if (!inputOctree)
            delete theOctree;
        return false;
    }

    //et on lisse le resultat
    if (applyGaussianFilter)
    {
        uchar level = theOctree->findBestLevelForAGivenPopulationPerCell(NUMBER_OF_POINTS_FOR_GRADIENT_COMPUTATION);
        PointCoordinateType cellSize = theOctree->getCellSize(level);
        ScalarFieldTools::applyScalarFieldGaussianFilter(static_cast<float>(cellSize/3),theCloud,-1,progressCb,theOctree);
    }

    unsigned seedPoints = 0;
    unsigned numberOfSegmentedLists = 0;

    //on va faire la propagation avec le FastMarching();
    FastMarchingForPropagation* fm = new FastMarchingForPropagation();

    fm->setJumpCoef(50.0);
    fm->setDetectionThreshold(alpha);

    int result = fm->init(theCloud,theOctree,octreeLevel);
    int octreeLength = OCTREE_LENGTH(octreeLevel)-1;

    if (result<0)
    {
        if (!inputOctree)
            delete theOctree;
        delete fm;
        return false;
    }

    if (progressCb)
    {
        progressCb->reset();
        progressCb->setMethodTitle("FM Propagation");
        char buffer[256];
        sprintf(buffer,"Octree level: %i\nNumber of points: %u",octreeLevel,numberOfPoints);
        progressCb->setInfo(buffer);
        progressCb->start();
    }

    ScalarField* theDists = new ScalarField("distances");
    {
        ScalarType d = theCloud->getPointScalarValue(0);
        if (!theDists->resize(numberOfPoints,true,d))
        {
            if (!inputOctree)
                delete theOctree;
            return false;

        }
    }

    unsigned maxDistIndex = 0, begin = 0;
    CCVector3 startPoint;

    while (true)
    {
        ScalarType maxDist = NAN_VALUE;

        //on cherche la premiere distance superieure ou egale a "minSeedDist"
        while (begin<numberOfPoints)
        {
            const CCVector3 *thePoint = theCloud->getPoint(begin);
            const ScalarType& theDistance = theDists->getValue(begin);
            ++begin;

            //FIXME DGM: what happens if SF is negative?!
            if (theCloud->getPointScalarValue(begin) >= 0 && theDistance >= minSeedDist)
            {
//.........这里部分代码省略.........
开发者ID:RobH616,项目名称:trunk,代码行数:101,代码来源:AutoSegmentationTools.cpp

示例4: assert

double StatisticalTestingTools::testCloudWithStatisticalModel(const GenericDistribution* distrib,
                                                              GenericIndexedCloudPersist* theCloud,
                                                              unsigned numberOfNeighbours,
                                                              double pTrust,
                                                              GenericProgressCallback* progressCb/*=0*/,
                                                              DgmOctree* inputOctree/*=0*/)
{
	assert(theCloud);

	if (!distrib->isValid())
		return -1.0;

	DgmOctree* theOctree = inputOctree;
	if (!theOctree)
	{
		theOctree = new DgmOctree(theCloud);
		if (theOctree->build(progressCb) < 1)
		{
			delete theOctree;
			return -2.0;
		}
	}

	//on active le champ scalaire (IN) pour recevoir les distances du Chi2
	theCloud->enableScalarField();

	unsigned char level = theOctree->findBestLevelForAGivenPopulationPerCell(numberOfNeighbours);

	unsigned numberOfChi2Classes = (unsigned)ceil(sqrt((double)numberOfNeighbours));

	//Chi2 hisogram values
	unsigned* histoValues = new unsigned[numberOfChi2Classes];
	if (!histoValues)
	{
		if (!inputOctree)
			delete theOctree;
		return -3.0;
	}

	ScalarType* histoMin = 0, customHistoMin = 0;
	ScalarType* histoMax = 0, customHistoMax = 0;
	if (strcmp(distrib->getName(),"Gauss")==0)
	{
		const NormalDistribution* nDist = static_cast<const NormalDistribution*>(distrib);
		ScalarType mu=0, sigma2=0;
		nDist->getParameters(mu, sigma2);
		customHistoMin = mu - (ScalarType)3.0 * sqrt(sigma2);
		histoMin = &customHistoMin;
		customHistoMax = mu + (ScalarType)3.0 * sqrt(sigma2);
		histoMax = &customHistoMax;
	}
	else if (strcmp(distrib->getName(),"Weibull")==0)
	{
		customHistoMin = 0;
		histoMin = &customHistoMin;
	}

	//additionnal parameters for local process
	void* additionalParameters[] = {	reinterpret_cast<void*>(const_cast<GenericDistribution*>(distrib)),
										reinterpret_cast<void*>(&numberOfNeighbours),
										reinterpret_cast<void*>(&numberOfChi2Classes),
										reinterpret_cast<void*>(histoValues),
										reinterpret_cast<void*>(histoMin),
										reinterpret_cast<void*>(histoMax) };

	double maxChi2 = -1.0;

	//let's compute Chi2 distances
	if (theOctree->executeFunctionForAllCellsStartingAtLevel(	level,
																&computeLocalChi2DistAtLevel,
																additionalParameters,
																numberOfNeighbours/2,
																numberOfNeighbours*3,
																true,
																progressCb,
																"Statistical Test") != 0) //sucess
	{
		if (!progressCb || !progressCb->isCancelRequested())
		{
			//theoretical Chi2 fractile
			maxChi2 = computeChi2Fractile(pTrust, numberOfChi2Classes-1);
			maxChi2 = sqrt(maxChi2); //on travaille avec les racines carrees des distances du Chi2
		}
	}

	delete[] histoValues;
	histoValues=0;

	if (!inputOctree)
        delete theOctree;

	return maxChi2;
}
开发者ID:3660628,项目名称:trunk,代码行数:93,代码来源:StatisticalTestingTools.cpp

示例5: DgmOctree

bool AutoSegmentationTools::frontPropagationBasedSegmentation(GenericIndexedCloudPersist* theCloud,
                                                                bool signedSF,
                                                                DistanceType minSeedDist,
                                                                uchar octreeLevel,
                                                                ReferenceCloudContainer& theSegmentedLists,
                                                                GenericProgressCallback* progressCb,
                                                                DgmOctree* _theOctree,
                                                                bool applyGaussianFilter,
                                                                float alpha)
{
	if (!theCloud)
        return false;
	unsigned numberOfPoints = theCloud->size();
	if (numberOfPoints<1)
        return false;

	//on calcule l'octree
	DgmOctree* theOctree = _theOctree;
	if (!theOctree)
	{
		theOctree = new DgmOctree(theCloud);
		if (theOctree->build(progressCb)<1)
		{
			delete theOctree;
			return false;
		}
	}

	ScalarField* theDists = new ScalarField("distances",true);
	if (!theDists->reserve(numberOfPoints))
	{
		if (!_theOctree)
			delete theOctree;
		return false;
	}
	theCloud->placeIteratorAtBegining();
	unsigned k=0;
	DistanceType d = theCloud->getPointScalarValue(k);
	for (;k<numberOfPoints;++k)
        theDists->addElement(d);

	//on calcule le gradient (va écraser le champ des distances)
	if (ScalarFieldTools::computeScalarFieldGradient(theCloud,signedSF,true,true,progressCb,theOctree)<0)
	{
		if (!_theOctree)
			delete theOctree;
		return false;
	}

	//et on lisse le résultat
	if (applyGaussianFilter)
	{
		uchar level = theOctree->findBestLevelForAGivenPopulationPerCell(NUMBER_OF_POINTS_FOR_GRADIENT_COMPUTATION);
		float cellSize = theOctree->getCellSize(level);
        ScalarFieldTools::applyScalarFieldGaussianFilter(cellSize*0.33f,theCloud,signedSF,-1,progressCb,theOctree);
	}

	DistanceType maxDist;
	unsigned seedPoints = 0;
	unsigned numberOfSegmentedLists = 0;

	//on va faire la propagation avec le FastMarching();
	FastMarchingForPropagation* fm = new FastMarchingForPropagation();

	fm->setJumpCoef(50.0);
	fm->setDetectionThreshold(alpha);

	int result = fm->init(theCloud,theOctree,octreeLevel);
	int octreeLength = OCTREE_LENGTH(octreeLevel)-1;

	if (result<0)
	{
		if (!_theOctree)
            delete theOctree;
		delete fm;
		return false;
	}

	if (progressCb)
	{
		progressCb->reset();
		progressCb->setMethodTitle("FM Propagation");
		char buffer[256];
		sprintf(buffer,"Octree level: %i\nNumber of points: %i",octreeLevel,numberOfPoints);
		progressCb->setInfo(buffer);
		progressCb->start();
	}

	unsigned maxDistIndex=0,begin = 0;
	CCVector3 startPoint;

	while (true)
	{
		maxDist = HIDDEN_VALUE;

		//on cherche la première distance supérieure ou égale à "minSeedDist"
		while (begin<numberOfPoints)
		{
			const CCVector3 *thePoint = theCloud->getPoint(begin);
			const DistanceType& theDistance = theDists->getValue(begin);
//.........这里部分代码省略.........
开发者ID:dshean,项目名称:trunk,代码行数:101,代码来源:AutoSegmentationTools.cpp

示例6: assert

ReferenceCloud* CloudSamplingTools::noiseFilter(GenericIndexedCloudPersist* inputCloud,
												PointCoordinateType kernelRadius,
												double nSigma,
												bool removeIsolatedPoints/*=false*/,
												bool useKnn/*=false*/,
												int knn/*=6*/,
												bool useAbsoluteError/*=true*/,
												double absoluteError/*=0.0*/,
												DgmOctree* inputOctree/*=0*/,
												GenericProgressCallback* progressCb/*=0*/)
{
	if (!inputCloud || inputCloud->size() < 2 || (useKnn && knn <= 0) || (!useKnn && kernelRadius <= 0))
	{
		//invalid input
		assert(false);
		return 0;
	}

	DgmOctree* octree = inputOctree;
	if (!octree)
	{
		octree = new DgmOctree(inputCloud);
		if (octree->build(progressCb) < 1)
		{
			delete octree;
			return 0;
		}
	}

	ReferenceCloud* filteredCloud = new ReferenceCloud(inputCloud);

	unsigned pointCount = inputCloud->size();
	if (!filteredCloud->reserve(pointCount))
	{
		//not enough memory
		if (!inputOctree)
			delete octree;
		delete filteredCloud;
		return 0;
	}

	//additional parameters
	void* additionalParameters[] = {reinterpret_cast<void*>(filteredCloud),
									reinterpret_cast<void*>(&kernelRadius),
									reinterpret_cast<void*>(&nSigma),
									reinterpret_cast<void*>(&removeIsolatedPoints),
									reinterpret_cast<void*>(&useKnn),
									reinterpret_cast<void*>(&knn),
									reinterpret_cast<void*>(&useAbsoluteError),
									reinterpret_cast<void*>(&absoluteError)
	};

	unsigned char octreeLevel = 0;
	if (useKnn)
		octreeLevel = octree->findBestLevelForAGivenNeighbourhoodSizeExtraction(kernelRadius);
	else
		octreeLevel = octree->findBestLevelForAGivenPopulationPerCell(knn);

	if (octree->executeFunctionForAllCellsAtLevel(	octreeLevel,
													&applyNoiseFilterAtLevel,
													additionalParameters,
													true,
													progressCb,
													"Noise filter" ) == 0)
	{
		//something went wrong
		delete filteredCloud;
		filteredCloud = 0;
	}

	if (!inputOctree)
	{
		delete octree;
		octree = 0;
	}

	if (filteredCloud)
	{
		filteredCloud->resize(filteredCloud->size());
	}

	return filteredCloud;
}
开发者ID:coolshahabaz,项目名称:trunk,代码行数:83,代码来源:CloudSamplingTools.cpp

示例7: switch

int GeometricalAnalysisTools::computeLocalDensity(	GenericIndexedCloudPersist* theCloud,
													Density densityType,
													PointCoordinateType kernelRadius,
													GenericProgressCallback* progressCb/*=0*/,
													DgmOctree* inputOctree/*=0*/)
{
	if (!theCloud)
		return -1;

	unsigned numberOfPoints = theCloud->size();
	if (numberOfPoints < 3)
		return -2;

	//compute the right dimensional coef based on the expected output
	double dimensionalCoef = 1.0;
	switch (densityType)
	{
	case DENSITY_KNN:
		dimensionalCoef = 1.0;
		break;
	case DENSITY_2D:
		dimensionalCoef = M_PI * (static_cast<double>(kernelRadius) * kernelRadius);
		break;
	case DENSITY_3D:
		dimensionalCoef = s_UnitSphereVolume * ((static_cast<double>(kernelRadius) * kernelRadius) * kernelRadius);
		break;
	default:
		assert(false);
		return -5;
	}

	DgmOctree* theOctree = inputOctree;
	if (!theOctree)
	{
		theOctree = new DgmOctree(theCloud);
		if (theOctree->build(progressCb) < 1)
		{
			delete theOctree;
			return -3;
		}
	}

	theCloud->enableScalarField();

	//determine best octree level to perform the computation
	unsigned char level = theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(kernelRadius);

	//parameters
	void* additionalParameters[] = {	static_cast<void*>(&kernelRadius),
										static_cast<void*>(&dimensionalCoef) };

	int result = 0;

	if (theOctree->executeFunctionForAllCellsAtLevel(	level,
														&computePointsDensityInACellAtLevel,
														additionalParameters,
														true,
														progressCb,
														"Local Density Computation") == 0)
	{
		//something went wrong
		result = -4;
	}

	if (!inputOctree)
        delete theOctree;

	return result;
}
开发者ID:johnjsb,项目名称:trunk,代码行数:69,代码来源:GeometricalAnalysisTools.cpp

示例8: DgmOctree

int ScalarFieldTools::computeScalarFieldGradient(	GenericIndexedCloudPersist* theCloud,
													PointCoordinateType radius,
													bool euclideanDistances,
													bool sameInAndOutScalarField/*=false*/,
													GenericProgressCallback* progressCb/*=0*/,
													DgmOctree* theCloudOctree/*=0*/)
{
	if (!theCloud)
        return -1;

	DgmOctree* theOctree = theCloudOctree;
	if (!theOctree)
	{
		theOctree = new DgmOctree(theCloud);
		if (theOctree->build(progressCb)<1)
		{
			delete theOctree;
			return -2;
		}
	}

	unsigned char octreeLevel = 0;
	if (radius <= 0)
	{
		octreeLevel = theOctree->findBestLevelForAGivenPopulationPerCell(AVERAGE_NUMBER_OF_POINTS_FOR_GRADIENT_COMPUTATION);
		radius = theOctree->getCellSize(octreeLevel);
	}
	else
	{
		octreeLevel = theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(radius);
	}

	ScalarField* theGradientNorms = new ScalarField("gradient norms");
	ScalarField* _theGradientNorms = 0;

	//mode champ scalaire "IN" et "OUT" identique
	if (sameInAndOutScalarField)
	{
		if (!theGradientNorms->reserve(theCloud->size())) //not enough memory
		{
			if (!theCloudOctree)
				delete theOctree;
			theGradientNorms->release();
			return -3;
		}
		_theGradientNorms = theGradientNorms;
	}
	else
	//mode champs scalaires "IN" et "OUT" dfferents (par defaut)
	{
		//on initialise les distances (IN - en ecriture) pour recevoir les normes du gradient
		if (!theCloud->enableScalarField())
		{
			if (!theCloudOctree)
				delete theOctree;
			theGradientNorms->release();
			return -4;
		}
	}

	//structure contenant les parametres additionnels
	void* additionalParameters[3] = {	static_cast<void*>(&euclideanDistances),
										static_cast<void*>(&radius),
										static_cast<void*>(_theGradientNorms)
	};

	int result = 0;

	if (theOctree->executeFunctionForAllCellsAtLevel(	octreeLevel,
														computeMeanGradientOnPatch,
														additionalParameters,
														true,
														progressCb,
														"Gradient Computation") == 0)
	{
		//something went wrong
		result = -5;
	}

	if (!theCloudOctree)
        delete theOctree;

	theGradientNorms->release();
	theGradientNorms=0;

    return result;
}
开发者ID:3660628,项目名称:trunk,代码行数:87,代码来源:ScalarFieldTools.cpp


注:本文中的DgmOctree类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。