本文整理汇总了C++中DataFile::AddDataSet方法的典型用法代码示例。如果您正苦于以下问题:C++ DataFile::AddDataSet方法的具体用法?C++ DataFile::AddDataSet怎么用?C++ DataFile::AddDataSet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DataFile
的用法示例。
在下文中一共展示了DataFile::AddDataSet方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Init
// Action_Angle::init()
Action::RetType Action_Angle::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
// Get keywords
DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
useMass_ = actionArgs.hasKey("mass");
// Get Masks
std::string mask1 = actionArgs.GetMaskNext();
std::string mask2 = actionArgs.GetMaskNext();
std::string mask3 = actionArgs.GetMaskNext();
if (mask1.empty() || mask2.empty() || mask3.empty()) {
mprinterr("Error: angle: Requires 3 masks\n");
return Action::ERR;
}
Mask1_.SetMaskString(mask1);
Mask2_.SetMaskString(mask2);
Mask3_.SetMaskString(mask3);
// Dataset to store angles
ang_ = DSL->AddSet(DataSet::DOUBLE, MetaData(actionArgs.GetStringNext(),MetaData::M_ANGLE),"Ang");
if (ang_==0) return Action::ERR;
// Add dataset to data file list
if (outfile != 0) outfile->AddDataSet( ang_ );
mprintf(" ANGLE: [%s]-[%s]-[%s]\n",Mask1_.MaskString(), Mask2_.MaskString(),
Mask3_.MaskString());
if (useMass_)
mprintf("\tUsing center of mass of atoms in masks.\n");
return Action::OK;
}
示例2: Init
/** Called once before traj processing. Set up reference info. */
Action::RetType Action_DistRmsd::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
// Check for keywords
DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
// Reference keywords
// TODO: Can these just be put in the InitRef call?
bool first = actionArgs.hasKey("first");
ReferenceFrame REF = DSL->GetReferenceFrame( actionArgs );
std::string reftrajname = actionArgs.GetStringKey("reftraj");
Topology* RefParm = PFL->GetParm( actionArgs );
// Get the RMS mask string for target
std::string mask0 = actionArgs.GetMaskNext();
TgtMask_.SetMaskString(mask0);
// Get the RMS mask string for reference
std::string mask1 = actionArgs.GetMaskNext();
if (mask1.empty())
mask1 = mask0;
// Initialize reference
if (refHolder_.InitRef(false, first, false, false, reftrajname, REF, RefParm,
mask1, actionArgs, "distrmsd"))
return Action::ERR;
// Set up the RMSD data set
drmsd_ = DSL->AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(),"DRMSD");
if (drmsd_==0) return Action::ERR;
// Add dataset to data file list
if (outfile != 0) outfile->AddDataSet( drmsd_ );
mprintf(" DISTRMSD: (%s), reference is %s\n",TgtMask_.MaskString(),
refHolder_.RefModeString());
return Action::OK;
}
示例3: Init
Action::RetType Action_Channel::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
// Keywords.
DataFile* outfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
dxyz_[0] = actionArgs.getKeyDouble("dx", 0.35);
dxyz_[1] = actionArgs.getKeyDouble("dy", dxyz_[0]);
dxyz_[2] = actionArgs.getKeyDouble("dz", dxyz_[1]);
// solute mask
std::string sMask = actionArgs.GetMaskNext();
if (sMask.empty()) {
mprinterr("Error: No solute mask specified.\n");
return Action::ERR;
}
soluteMask_.SetMaskString( sMask );
// solvent mask
sMask = actionArgs.GetMaskNext();
if (sMask.empty())
sMask.assign(":[email protected]");
solventMask_.SetMaskString( sMask );
// Grid Data Set
grid_ = init.DSL().AddSet(DataSet::GRID_FLT, actionArgs.GetStringNext(), "Channel");
if (grid_ == 0) return Action::ERR;
if (outfile != 0) outfile->AddDataSet( grid_ );
mprintf("Warning: *** THIS ACTION IS EXPERIMENTAL AND NOT FULLY IMPLEMENTED. ***\n");
mprintf(" CHANNEL: Solute mask [%s], solvent mask [%s]\n",
soluteMask_.MaskString(), solventMask_.MaskString());
mprintf("\tSpacing: XYZ={ %g %g %g }\n", dxyz_[0], dxyz_[1], dxyz_[2]);
return Action::OK;
}
示例4: Init
// Action_AreaPerMol::Init()
Action::RetType Action_AreaPerMol::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
// Get keywords
DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
if (actionArgs.hasKey("xy")) areaType_ = XY;
else if (actionArgs.hasKey("xz")) areaType_ = XZ;
else if (actionArgs.hasKey("yz")) areaType_ = YZ;
else areaType_ = XY;
Nmols_ = (double)actionArgs.getKeyInt("nmols", -1);
// Get Masks
if (Nmols_ < 0.0) {
Nlayers_ = (double)actionArgs.getKeyInt("nlayers", 1);
if (Nlayers_ < 1.0) {
mprinterr("Error: Number of layers must be > 0\n");
return Action::ERR;
}
Mask1_.SetMaskString( actionArgs.GetMaskNext() );
}
// DataSet
area_per_mol_ = DSL->AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(),"APM");
if (area_per_mol_==0) return Action::ERR;
// Add DataSet to DataFileList
if (outfile != 0) outfile->AddDataSet( area_per_mol_ );
mprintf(" AREAPERMOL: Calculating %s area per molecule", APMSTRING[areaType_]);
if (Mask1_.MaskStringSet())
mprintf(" using mask '%s', %.0f layers.\n", Mask1_.MaskString(), Nlayers_);
else
mprintf(" for %.0f mols\n", Nmols_);
return Action::OK;
}
示例5: Init
// Action_Grid::Init()
Action::RetType Action_Grid::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
debug_ = debugIn;
nframes_ = 0;
// Get output filename
std::string filename = actionArgs.GetStringKey("out");
// Get grid options
grid_ = GridInit( "GRID", actionArgs, init.DSL() );
if (grid_ == 0) return Action::ERR;
# ifdef MPI
if (ParallelGridInit(init.TrajComm(), grid_)) return Action::ERR;
# endif
// Get extra options
max_ = actionArgs.getKeyDouble("max", 0.80);
madura_ = actionArgs.getKeyDouble("madura", 0);
smooth_ = actionArgs.getKeyDouble("smoothdensity", 0);
invert_ = actionArgs.hasKey("invert");
pdbfile_ = init.DFL().AddCpptrajFile(actionArgs.GetStringKey("pdb"),"Grid PDB",DataFileList::PDB,true);
density_ = actionArgs.getKeyDouble("density",0.033456);
if (actionArgs.hasKey("normframe")) normalize_ = TO_FRAME;
else if (actionArgs.hasKey("normdensity")) normalize_ = TO_DENSITY;
else normalize_ = NONE;
if (normalize_ != NONE && (smooth_ > 0.0 || madura_ > 0.0)) {
mprinterr("Error: Normalize options are not compatible with smoothdensity/madura options.\n");
init.DSL().RemoveSet( grid_ );
return Action::ERR;
}
// Get mask
std::string maskexpr = actionArgs.GetMaskNext();
if (maskexpr.empty()) {
mprinterr("Error: GRID: No mask specified.\n");
init.DSL().RemoveSet( grid_ );
return Action::ERR;
}
mask_.SetMaskString(maskexpr);
// Setup output file
// For backwards compat., if no 'out' assume next string is filename
if (filename.empty() && actionArgs.Nargs() > 1 && !actionArgs.Marked(1))
filename = actionArgs.GetStringNext();
DataFile* outfile = init.DFL().AddDataFile(filename, actionArgs);
if (outfile != 0) outfile->AddDataSet((DataSet*)grid_);
// Info
mprintf(" GRID:\n");
GridInfo( *grid_ );
if (outfile != 0) mprintf("\tGrid will be printed to file %s\n", outfile->DataFilename().full());
mprintf("\tGrid data set: '%s'\n", grid_->legend());
mprintf("\tMask expression: [%s]\n",mask_.MaskString());
if (pdbfile_ != 0)
mprintf("\tPseudo-PDB will be printed to %s\n", pdbfile_->Filename().full());
if (normalize_ == TO_FRAME)
mprintf("\tGrid will be normalized by number of frames.\n");
else if (normalize_ == TO_DENSITY)
mprintf("\tGrid will be normalized to a density of %g molecules/Ang^3.\n", density_);
// TODO: print extra options
return Action::OK;
}
示例6: Init
// Action_FilterByData::Init()
Action::RetType Action_FilterByData::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
maxmin_ = init.DSL().AddSet( DataSet::INTEGER, actionArgs.GetStringKey("name"), "Filter" );
if (maxmin_ == 0) return Action::ERR;
DataFile* maxminfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
if (maxminfile != 0)
maxminfile->AddDataSet( maxmin_ );
// Get min and max args.
while (actionArgs.Contains("min"))
Min_.push_back( actionArgs.getKeyDouble("min", 0.0) );
while (actionArgs.Contains("max"))
Max_.push_back( actionArgs.getKeyDouble("max", 0.0) );
if (Min_.empty()) {
mprinterr("Error: At least one 'min' arg must be specified.\n");
return Action::ERR;
}
if (Max_.empty()) {
mprinterr("Error: At least one 'max' arg must be specified.\n");
return Action::ERR;
}
if (Min_.size() != Max_.size()) {
mprinterr("Error: # of 'min' args (%zu) != # of 'max' args (%zu)\n",
Min_.size(), Max_.size());
return Action::ERR;
}
// Get DataSets from remaining arguments
Dsets_.AddSetsFromArgs( actionArgs.RemainingArgs(), init.DSL() );
if (Dsets_.empty()) {
mprinterr("Error: No data sets specified.\n");
return Action::ERR;
}
if ( Dsets_.size() < Min_.size() ) {
mprinterr("Error: More 'min'/'max' args (%zu) than data sets (%zu).\n",
Min_.size(), Dsets_.size());
return Action::ERR;
}
if ( Dsets_.size() > Min_.size() ) {
unsigned int Nremaining = Dsets_.size() - Min_.size();
double useMin = Min_.back();
double useMax = Max_.back();
mprintf("Warning: More data sets than 'min'/'max' args.\n"
"Warning: Using min=%f and max=%f for last %zu data sets.\n",
useMin, useMax, Nremaining);
for (unsigned int ds = 0; ds < Nremaining; ++ds) {
Min_.push_back( useMin );
Max_.push_back( useMax );
}
}
mprintf(" FILTER: Filtering out frames using %zu data sets.\n", Dsets_.size());
for (unsigned int ds = 0; ds < Dsets_.size(); ds++)
mprintf("\t%.4f < '%s' < %.4f\n", Min_[ds], Dsets_[ds]->legend(), Max_[ds]);
if (maxminfile != 0)
mprintf("\tFilter frame info will be written to %s\n", maxminfile->DataFilename().full());
return Action::OK;
}
示例7: Init
// Action_VelocityAutoCorr::Init()
Action::RetType Action_VelocityAutoCorr::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
if (actionArgs.hasKey("usevelocity")) {
mprinterr("Error: The 'usevelocity' keyword is deprecated. Velocity information\n"
"Error: is now used by default if present. To force cpptraj to use\n"
"Error: coordinates to estimate velocities (not recommended) use the\n"
"Error: 'usecoords' keyword.\n");
return Action::ERR;
}
useVelInfo_ = !actionArgs.hasKey("usecoords");
if (mask_.SetMaskString( actionArgs.GetMaskNext() )) return Action::ERR;
DataFile* outfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
diffout_ = init.DFL().AddCpptrajFile( actionArgs.GetStringKey("diffout"),
"VAC diffusion constants", DataFileList::TEXT, true );
maxLag_ = actionArgs.getKeyInt("maxlag", -1);
tstep_ = actionArgs.getKeyDouble("tstep", 1.0);
useFFT_ = !actionArgs.hasKey("direct");
normalize_ = actionArgs.hasKey("norm");
// Set up output data set
VAC_ = init.DSL().AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(), "VAC");
if (VAC_ == 0) return Action::ERR;
// TODO: This should just be a scalar
diffConst_ = init.DSL().AddSet(DataSet::DOUBLE,
MetaData(VAC_->Meta().Name(), "D", MetaData::NOT_TS));
if (diffConst_ == 0) return Action::ERR;
if (outfile != 0) outfile->AddDataSet( VAC_ );
# ifdef MPI
trajComm_ = init.TrajComm();
if (trajComm_.Size() > 1 && !useVelInfo_)
mprintf("\nWarning: When calculating velocities between consecutive frames,\n"
"\nWarning: 'velocityautocorr' in parallel will not work correctly if\n"
"\nWarning: coordinates have been modified by previous actions (e.g. 'rms').\n\n");
diffConst_->SetNeedsSync( false );
# endif
mprintf(" VELOCITYAUTOCORR:\n"
"\tCalculate velocity auto-correlation function for atoms in mask '%s'\n",
mask_.MaskString());
if (useVelInfo_)
mprintf("\tUsing velocity information present in frames.\n");
else
mprintf("\tCalculating velocities between consecutive frames from coordinates.\n");
if (outfile != 0)
mprintf("\tOutput velocity autocorrelation function '%s' to '%s'\n", VAC_->legend(),
outfile->DataFilename().full());
mprintf("\tWriting diffusion constants to '%s'\n", diffout_->Filename().full());
if (maxLag_ < 1)
mprintf("\tMaximum lag will be half total # of frames");
else
mprintf("\tMaximum lag is %i frames", maxLag_);
mprintf(", time step between frames is %f ps\n", tstep_);
if (useFFT_)
mprintf("\tUsing FFT to calculate autocorrelation function.\n");
else
mprintf("\tUsing direct method to calculate autocorrelation function.\n");
if (normalize_)
mprintf("\tNormalizing autocorrelation function to 1.0\n");
return Action::OK;
}
示例8: Setup
// Analysis_Wavelet::Setup
Analysis::RetType Analysis_Wavelet::Setup(ArgList& analyzeArgs, DataSetList* datasetlist,
TopologyList* PFLin, DataFileList* DFLin, int debugIn)
{
// Attempt to get COORDS DataSet from DataSetList. If none specified the
// default COORDS set will be used.
std::string setname = analyzeArgs.GetStringKey("crdset");
coords_ = (DataSet_Coords*)datasetlist->FindCoordsSet( setname );
if (coords_ == 0) {
mprinterr("Error: Could not locate COORDS set corresponding to %s\n", setname.c_str());
return Analysis::ERR;
}
// Get keywords
DataFile* outfile = DFLin->AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
setname = analyzeArgs.GetStringKey("name");
// TODO: Check defaults
nb_ = analyzeArgs.getKeyInt("nb", 0); // FIXME: Should be more descriptive? nscale?
if (nb_ < 1) {
mprinterr("Error: Scaling number must be > 0\n");
return Analysis::ERR;
}
S0_ = analyzeArgs.getKeyDouble("s0", 0.2);
ds_ = analyzeArgs.getKeyDouble("ds", 1.0/3.0);
correction_ = analyzeArgs.getKeyDouble("correction", 1.01);
chival_ = analyzeArgs.getKeyDouble("chival", 0.2231);
// Wavelet type: default to Morlet
std::string wavelet_name = analyzeArgs.GetStringKey("type");
if (wavelet_name.empty())
wavelet_type_ = W_MORLET;
else {
wavelet_type_ = W_NONE;
for (int itoken = 0; itoken != (int)W_NONE; itoken++)
if (wavelet_name.compare(Tokens_[itoken].key_) == 0) {
wavelet_type_ = (WaveletType)itoken;
break;
}
if (wavelet_type_ == W_NONE) {
mprinterr("Error: Unrecognized wavelet type: %s\n", wavelet_name.c_str());
return Analysis::ERR;
}
}
// Atom mask
mask_.SetMaskString( analyzeArgs.GetMaskNext() );
// Set up output data set
output_ = datasetlist->AddSet( DataSet::MATRIX_FLT, setname, "WAVELET" );
if (output_ == 0) return Analysis::ERR;
if (outfile != 0) outfile->AddDataSet( output_ );
mprintf(" WAVELET: Using COORDS set '%s', wavelet type %s\n",
coords_->legend(), Tokens_[wavelet_type_].description_);
mprintf("\tCalculating for atoms in mask '%s'\n", mask_.MaskString());
mprintf("\tScaling wavelet %i times starting from %g with delta of %g\n",
nb_, S0_, ds_);
mprintf("\tCorrection: %g\n", correction_);
mprintf("\tChiVal: %g\n", chival_);
if (outfile != 0) mprintf("\tOutput to '%s'\n", outfile->DataFilename().full());
return Analysis::OK;
}
示例9: Init
// Action_AtomicFluct::Init()
Action::RetType Action_AtomicFluct::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
// Get frame # keywords
if (InitFrameCounter(actionArgs)) return Action::ERR;
// Get other keywords
bfactor_ = actionArgs.hasKey("bfactor");
calc_adp_ = actionArgs.hasKey("calcadp");
adpoutfile_ = DFL->AddCpptrajFile(actionArgs.GetStringKey("adpout"), "PDB w/ADP",
DataFileList::PDB);;
if (adpoutfile_!=0) calc_adp_ = true; // adpout implies calcadp
if (calc_adp_ && !bfactor_) bfactor_ = true;
DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
if (actionArgs.hasKey("byres"))
outtype_ = BYRES;
else if (actionArgs.hasKey("bymask"))
outtype_ = BYMASK;
else if (actionArgs.hasKey("byatom") || actionArgs.hasKey("byatm"))
outtype_ = BYATOM;
// Get Mask
Mask_.SetMaskString( actionArgs.GetMaskNext() );
// Get DataSet name
std::string setname = actionArgs.GetStringNext();
// Add output dataset
MetaData md( setname );
md.SetTimeSeries( MetaData::NOT_TS );
if (bfactor_)
md.SetLegend("B-factors");
else
md.SetLegend("AtomicFlx");
dataout_ = DSL->AddSet( DataSet::XYMESH, md, "Fluct" );
if (dataout_ == 0) {
mprinterr("Error: AtomicFluct: Could not allocate dataset for output.\n");
return Action::ERR;
}
if (outfile != 0)
outfile->AddDataSet( dataout_ );
mprintf(" ATOMICFLUCT: calculating");
if (bfactor_)
mprintf(" B factors");
else
mprintf(" atomic positional fluctuations");
if (outfile != 0)
mprintf(", output to file %s", outfile->DataFilename().full());
mprintf("\n Atom mask: [%s]\n",Mask_.MaskString());
FrameCounterInfo();
if (calc_adp_) {
mprintf("\tCalculating anisotropic displacement parameters.\n");
if (adpoutfile_!=0) mprintf("\tWriting PDB with ADP to '%s'\n", adpoutfile_->Filename().full());
}
if (!setname.empty())
mprintf("\tData will be saved to set named %s\n", setname.c_str());
return Action::OK;
}
示例10: Setup
Analysis::RetType Analysis_AutoCorr::Setup(ArgList& analyzeArgs, DataSetList* datasetlist,
TopologyList* PFLin, DataFileList* DFLin, int debugIn)
{
const char* calctype;
std::string setname = analyzeArgs.GetStringKey("name");
DataFile* outfile = DFLin->AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
lagmax_ = analyzeArgs.getKeyInt("lagmax",-1);
calc_covar_ = !analyzeArgs.hasKey("nocovar");
usefft_ = !analyzeArgs.hasKey("direct");
// Select datasets from remaining args
ArgList dsetArgs = analyzeArgs.RemainingArgs();
for (ArgList::const_iterator dsa = dsetArgs.begin(); dsa != dsetArgs.end(); ++dsa)
dsets_ += datasetlist->GetMultipleSets( *dsa );
if (dsets_.empty()) {
mprinterr("Error: autocorr: No data sets selected.\n");
return Analysis::ERR;
}
// If setname is empty generate a default name
if (setname.empty())
setname = datasetlist->GenerateDefaultName( "autocorr" );
// Setup output datasets
int idx = 0;
MetaData md( setname );
for (DataSetList::const_iterator DS = dsets_.begin(); DS != dsets_.end(); ++DS) {
md.SetIdx( idx++ );
DataSet* dsout = datasetlist->AddSet( DataSet::DOUBLE, md );
if (dsout==0) return Analysis::ERR;
dsout->SetLegend( (*DS)->Meta().Legend() );
outputData_.push_back( dsout );
// Add set to output file
if (outfile != 0) outfile->AddDataSet( outputData_.back() );
}
if (calc_covar_)
calctype = "covariance";
else
calctype = "correlation";
mprintf(" AUTOCORR: Calculating auto-%s for %i data sets:\n", calctype, dsets_.size());
dsets_.List();
if (lagmax_!=-1)
mprintf("\tLag max= %i\n", lagmax_);
if ( !setname.empty() )
mprintf("\tSet name: %s\n", setname.c_str() );
if ( outfile != 0 )
mprintf("\tOutfile name: %s\n", outfile->DataFilename().base());
if (usefft_)
mprintf("\tUsing FFT to calculate %s.\n", calctype);
else
mprintf("\tUsing direct method to calculate %s.\n", calctype);
return Analysis::OK;
}
示例11: Init
// Action_SymmetricRmsd::Init()
Action::RetType Action_SymmetricRmsd::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
// Check for keywords
bool fit = !actionArgs.hasKey("nofit");
bool useMass = actionArgs.hasKey("mass");
DataFile* outfile = init.DFL().AddDataFile(actionArgs.GetStringKey("out"), actionArgs);
remap_ = actionArgs.hasKey("remap");
// Reference keywords
bool previous = actionArgs.hasKey("previous");
bool first = actionArgs.hasKey("first");
ReferenceFrame REF = init.DSL().GetReferenceFrame( actionArgs );
std::string reftrajname = actionArgs.GetStringKey("reftraj");
Topology* RefParm = init.DSL().GetTopology( actionArgs );
// Get the RMS mask string for target
std::string tMaskExpr = actionArgs.GetMaskNext();
if (tgtMask_.SetMaskString( tMaskExpr )) return Action::ERR;
// Initialize Symmetric RMSD calc.
if (SRMSD_.InitSymmRMSD( fit, useMass, debugIn )) return Action::ERR;
// Initialize reference
std::string rMaskExpr = actionArgs.GetMaskNext();
if (rMaskExpr.empty())
rMaskExpr = tMaskExpr;
if (REF_.InitRef(previous, first, useMass, fit, reftrajname, REF, RefParm,
rMaskExpr, actionArgs, "symmrmsd"))
return Action::ERR;
// Set up the RMSD data set.
MetaData md(actionArgs.GetStringNext(), MetaData::M_RMS);
rmsd_ = init.DSL().AddSet(DataSet::DOUBLE, md, "RMSD");
if (rmsd_==0) return Action::ERR;
// Add dataset to data file list
if (outfile != 0) outfile->AddDataSet( rmsd_ );
if (remap_ || SRMSD_.Fit())
action_return_ = Action::MODIFY_COORDS;
else
action_return_ = Action::OK;
mprintf(" SYMMRMSD: (%s), reference is %s", tgtMask_.MaskString(),
REF_.RefModeString());
if (!SRMSD_.Fit())
mprintf(", no fitting");
else
mprintf(", with fitting");
if (SRMSD_.UseMass())
mprintf(", mass-weighted");
mprintf(".\n");
if (remap_) mprintf("\tAtoms will be re-mapped for symmetry.\n");
return Action::OK;
}
示例12: Print
void Action_Spam::Print() {
// Print the spam info file if we didn't do pure water
if (!purewater_) {
// Warn about any overflows
if (overflow_)
mprinterr("Warning: SPAM: Some frames had a box too small for the cutoff.\n");
// Print information about each missing peak
infofile_->Printf("# There are %d density peaks and %d frames\n\n",
(int)peaks_.size(), Nframes_);
// Loop over every Data set
for (unsigned int i = 0; i < peakFrameData_.size(); i++) {
// Skip peaks with 0 unoccupied sites
if (peakFrameData_[i].size() == 0) continue;
// Find out how many double-occupied frames there are
int ndouble = 0;
for (unsigned int j = 0; j < peakFrameData_[i].size(); j++)
if (peakFrameData_[i][j] < 0) ndouble++;
infofile_->Printf("# Peak %u has %d omitted frames (%d double-occupied)\n",
i, peakFrameData_[i].size(), ndouble);
for (unsigned int j = 0; j < peakFrameData_[i].size(); j++) {
if (j > 0 && j % 10 == 0) infofile_->Printf("\n");
infofile_->Printf("%7d ", peakFrameData_[i][j]);
}
infofile_->Printf("\n\n");
}
}
// Print the summary file with the calculated SPAM energies
if (!summaryfile_.empty()) {
// Not enabled yet -- just print out the data files.
mprinterr("Warning: SPAM: SPAM calculation not yet enabled.\n");
if (datafile_.empty()) datafile_ = summaryfile_;
}
// Now print the energy data
if (!datafile_.empty()) {
// Now write the data file with all of the SPAM energies
DataFile dfl;
ArgList dummy;
dfl.SetupDatafile(datafile_, dummy, 0);
for (int i = 0; i < (int)myDSL_.size(); i++) {
dfl.AddDataSet(myDSL_[i]);
}
dfl.WriteDataOut();
}
}
示例13: Init
// Action_Distance::Init()
Action::RetType Action_Distance::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
AssociatedData_NOE noe;
// Get Keywords
image_.InitImaging( !(actionArgs.hasKey("noimage")) );
useMass_ = !(actionArgs.hasKey("geom"));
DataFile* outfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
MetaData::scalarType stype = MetaData::UNDEFINED;
std::string stypename = actionArgs.GetStringKey("type");
if ( stypename == "noe" ) {
stype = MetaData::NOE;
if (noe.NOE_Args( actionArgs )) return Action::ERR;
}
// Get Masks
std::string mask1 = actionArgs.GetMaskNext();
std::string mask2 = actionArgs.GetMaskNext();
if (mask1.empty() || mask2.empty()) {
mprinterr("Error: distance requires 2 masks\n");
return Action::ERR;
}
Mask1_.SetMaskString(mask1);
Mask2_.SetMaskString(mask2);
// Dataset to store distances TODO store masks in data set?
dist_ = init.DSL().AddSet(DataSet::DOUBLE, MetaData(actionArgs.GetStringNext(),
MetaData::M_DISTANCE, stype), "Dis");
if (dist_==0) return Action::ERR;
if ( stype == MetaData::NOE ) {
dist_->AssociateData( &noe );
dist_->SetLegend(Mask1_.MaskExpression() + " and " + Mask2_.MaskExpression());
}
// Add dataset to data file
if (outfile != 0) outfile->AddDataSet( dist_ );
mprintf(" DISTANCE: %s to %s",Mask1_.MaskString(), Mask2_.MaskString());
if (!image_.UseImage())
mprintf(", non-imaged");
if (useMass_)
mprintf(", center of mass");
else
mprintf(", geometric center");
mprintf(".\n");
return Action::OK;
}
示例14: Setup
// Analysis_VectorMath::Setup()
Analysis::RetType Analysis_VectorMath::Setup(ArgList& analyzeArgs, DataSetList* DSLin, DataFileList* DFLin, int debugIn)
{
// Get Vectors
vinfo1_ = (DataSet_Vector*)DSLin->FindSetOfType( analyzeArgs.GetStringKey("vec1"),
DataSet::VECTOR );
vinfo2_ = (DataSet_Vector*)DSLin->FindSetOfType( analyzeArgs.GetStringKey("vec2"),
DataSet::VECTOR );
if (vinfo1_ == 0 ) {
mprinterr("Error: 'vec1' not found.\n");
return Analysis::ERR;
}
if (vinfo2_ == 0) {
mprinterr("Error: 'vec2' not found.\n");
return Analysis::ERR;
}
std::string setname = analyzeArgs.GetStringKey("name");
norm_ = analyzeArgs.hasKey("norm");
// Check for dotproduct/crossproduct keywords
DataOut_ = 0;
if (analyzeArgs.hasKey("dotproduct")) {
mode_ = DOTPRODUCT;
if ((DataOut_ = DSLin->AddSet(DataSet::DOUBLE, setname, "Dot")) == 0) return Analysis::ERR;
} else if (analyzeArgs.hasKey("dotangle")) {
mode_ = DOTANGLE;
norm_ = true; // Vecs must be normalized for angle calc to work
if ((DataOut_ = DSLin->AddSet(DataSet::DOUBLE, setname, "Angle")) == 0) return Analysis::ERR;
} else if (analyzeArgs.hasKey("crossproduct")) {
mode_ = CROSSPRODUCT;
if ((DataOut_ = DSLin->AddSet(DataSet::VECTOR, setname, "Cross")) == 0) return Analysis::ERR;
} else
mode_ = DOTPRODUCT;
// Set up output file in DataFileList if necessary
DataFile* outfile = DFLin->AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
if (outfile != 0) outfile->AddDataSet( DataOut_ );
// Print Status
mprintf(" VECTORMATH: Calculating %s of vectors %s and %s\n",
ModeString[mode_], vinfo1_->legend(), vinfo2_->legend());
if (norm_) mprintf("\tVectors will be normalized.\n");
if (outfile != 0)
mprintf("\tResults are written to %s\n", outfile->DataFilename().full());
return Analysis::OK;
}
示例15: Init
// Action_VelocityAutoCorr::Init()
Action::RetType Action_VelocityAutoCorr::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
useVelInfo_ = actionArgs.hasKey("usevelocity");
mask_.SetMaskString( actionArgs.GetMaskNext() );
DataFile* outfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
maxLag_ = actionArgs.getKeyInt("maxlag", -1);
tstep_ = actionArgs.getKeyDouble("tstep", 1.0);
useFFT_ = !actionArgs.hasKey("direct");
normalize_ = actionArgs.hasKey("norm");
// Set up output data set
VAC_ = init.DSL().AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(), "VAC");
if (VAC_ == 0) return Action::ERR;
if (outfile != 0) outfile->AddDataSet( VAC_ );
# ifdef MPI
trajComm_ = init.TrajComm();
if (trajComm_.Size() > 1 && !useVelInfo_)
mprintf("\nWarning: When calculating velocities between consecutive frames,\n"
"\nWarning: 'velocityautocorr' in parallel will not work correctly if\n"
"\nWarning: coordinates have been modified by previous actions (e.g. 'rms').\n\n");
# endif
mprintf(" VELOCITYAUTOCORR:\n"
"\tCalculate velocity auto-correlation function for atoms in mask '%s'\n",
mask_.MaskString());
if (useVelInfo_)
mprintf("\tUsing velocity information present in frames.\n");
else
mprintf("\tCalculating velocities between consecutive frames.\n");
if (outfile != 0)
mprintf("\tOutput data set '%s' to '%s'\n", VAC_->legend(),
outfile->DataFilename().full());
if (maxLag_ < 1)
mprintf("\tMaximum lag will be half total # of frames");
else
mprintf("\tMaximum lag is %i frames", maxLag_);
mprintf(", time step is %f ps\n", tstep_);
if (useFFT_)
mprintf("\tUsing FFT to calculate autocorrelation function.\n");
else
mprintf("\tUsing direct method to calculate autocorrelation function.\n");
if (normalize_)
mprintf("\tNormalizing autocorrelation function to 1.0\n");
return Action::OK;
}