本文整理汇总了C++中DVec::data方法的典型用法代码示例。如果您正苦于以下问题:C++ DVec::data方法的具体用法?C++ DVec::data怎么用?C++ DVec::data使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DVec
的用法示例。
在下文中一共展示了DVec::data方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: eig_sym
// compute eigensystem of a real symmetric matrix
//---------------------------------------------------------
void eig_sym(const DMat& A, DVec& ev, DMat& Q, bool bDoEVecs)
//---------------------------------------------------------
{
if (!A.is_square()) { umERROR("eig_sym(A)", "matrix is not square."); }
int N = A.num_rows();
int LDA=N, LDVL=N, LDVR=N, ldwork=10*N, info=0;
DVec work(ldwork, 0.0, OBJ_temp, "work_TMP");
Q = A; // Calculate eigenvectors in Q (optional)
ev.resize(N); // Calculate eigenvalues in ev
char jobV = bDoEVecs ? 'V' : 'N';
SYEV (jobV,'U', N, Q.data(), LDA, ev.data(), work.data(), ldwork, info);
if (info < 0) {
umERROR("eig_sym(A, Re,Im)", "Error in input argument (%d)\nNo solution computed.", -info);
} else if (info > 0) {
umLOG(1, "eig_sym(A, W): ...\n"
"\nthe algorithm failed to converge;"
"\n%d off-diagonal elements of an intermediate"
"\ntridiagonal form did not converge to zero.\n", info);
}
}
示例2: umSOLVE_CH
// DPOSV uses Cholesky factorization A=U^T*U, A=L*L^T
// to compute the solution to a real system of linear
// equations A*X=B, where A is a square, (N,N) symmetric
// positive definite matrix and X and B are (N,NRHS).
//---------------------------------------------------------
void umSOLVE_CH(const DMat& mat, const DVec& b, DVec& x)
//---------------------------------------------------------
{
// check args
assert(mat.is_square()); // symmetric
assert(b.size() >= mat.num_rows()); // is b consistent?
assert(b.size() <= x.size()); // can x store solution?
DMat A(mat); // work with copy of input
x = b; // allocate solution vector
int rows=A.num_rows(), LDA=A.num_rows(), cols=A.num_cols();
int LDB=b.size(), NRHS=1, info=0;
if (rows<1) {umWARNING("umSOLVE_CH()", "system is empty"); return;}
// Solve the system.
POSV('U', rows, NRHS, A.data(), LDA, x.data(), LDB, info);
if (info < 0) {
x = 0.0;
umERROR("umSOLVE_CH(A,b, x)",
"Error in input argument (%d)\nNo solution computed.", -info);
} else if (info > 0) {
x = 0.0;
umERROR("umSOLVE_CH(A,b, x)",
"\nINFO = %d. The leading minor of order %d of A"
"\nis not positive definite, so the factorization"
"\ncould not be completed. No solution computed.",
info, info);
}
}
示例3:
//---------------------------------------------------------
void Poly3D::AddPoint(const DVec& point)
//---------------------------------------------------------
{
if (!HavePoint(point)) {
// append this point
m_xyz.append_col(3, (double*)point.data());
++m_N;
}
}
示例4: eig
//---------------------------------------------------------
void eig(const DMat& A, DVec& Re, DMat& VL, DMat& VR, bool bL, bool bR)
//---------------------------------------------------------
{
// Compute eigensystem of a real general matrix
// Currently NOT returning imaginary components
static DMat B;
if (!A.is_square()) { umERROR("eig(A)", "matrix is not square."); }
int N = A.num_rows();
int LDA=N, LDVL=N, LDVR=N, ldwork=10*N, info=0;
Re.resize(N); // store REAL components of eigenvalues in Re
VL.resize(N,N); // storage for LEFT eigenvectors
VR.resize(N,N); // storage for RIGHT eigenvectors
DVec Im(N); // NOT returning imaginary components
DVec work(ldwork, 0.0);
// Work on a copy of A
B = A;
char jobL = bL ? 'V' : 'N'; // calc LEFT eigenvectors?
char jobR = bR ? 'V' : 'N'; // calc RIGHT eigenvectors?
GEEV (jobL,jobR, N, B.data(), LDA, Re.data(), Im.data(),
VL.data(), LDVL, VR.data(), LDVR, work.data(), ldwork, info);
if (info < 0) {
umERROR("eig(A, Re,Im)", "Error in input argument (%d)\nNo solution computed.", -info);
} else if (info > 0) {
umLOG(1, "eig(A, Re,Im): ...\n"
"\nThe QR algorithm failed to compute all the"
"\neigenvalues, and no eigenvectors have been"
"\ncomputed; elements %d+1:N of WR and WI contain"
"\neigenvalues which have converged.\n", info);
}
#if (0)
// Return (Re,Imag) parts of eigenvalues as columns of Ev
Ev.resize(N,2);
Ev.set_col(1, Re);
Ev.set_col(2, Im);
#endif
#ifdef _DEBUG
//#####################################################
// Check for imaginary components in eigenvalues
//#####################################################
double im_max = Im.max_val_abs();
if (im_max > 1e-6) {
umERROR("eig(A)", "imaginary components in eigenvalues.");
}
//#####################################################
#endif
}
示例5: sqrt
//---------------------------------------------------------
bool Poly3D::HavePoint(const DVec& point)
//---------------------------------------------------------
{
const double* p1 = point.data();
double tol = 1e-6, normi=0.0; DVec pnti,tv;
for (int i=1; i<=m_N; ++i)
{
const double* p2 = m_xyz.pCol(i);
normi = sqrt( SQ(p1[0]-p2[0]) +
SQ(p1[1]-p2[1]) +
SQ(p1[2]-p2[2]) );
if (normi < tol) { return true; }
}
return false;
}
示例6: assert
//---------------------------------------------------------
DVec& chol_solve(const DMat& ch, const DVec& b)
//---------------------------------------------------------
{
// Solves a linear system using Cholesky-factored
// symmetric positive-definite matrix, A = U^T U.
if (FACT_CHOL != ch.get_factmode()) {umERROR("chol_solve(ch,b)", "matrix is not factored.");}
int M=ch.num_rows(), lda=ch.num_rows();
int nrhs=1, ldb=b.size(); assert(ldb == M);
char uplo = 'U'; int info=0;
double* ch_data = const_cast<double*>(ch.data());
// copy RHS into x, then overwrite x with solution
DVec* x = new DVec(b, OBJ_temp);
POTRS (uplo, M, nrhs, ch_data, lda, x->data(), ldb, info);
if (info) { umERROR("chol_solve(ch,b)", "dpotrs reports: info = %d", info); }
return (*x);
}
示例7: A
// Computes an SVD factorization of a real MxN matrix.
// Returns the vector of singular values.
// Also, factors U, VT, where A = U * D * VT.
//---------------------------------------------------------
DVec& svd
(
const DMat& mat, // [in]
DMat& U, // [out: left singular vectors]
DMat& VT, // [out: right singular vectors]
char ju, // [in: want U?]
char jvt // [in: want VT?]
)
//---------------------------------------------------------
{
// Work with a copy of the input matrix.
DMat A(mat, OBJ_temp, "svd.TMP");
// A(MxN)
int m=A.num_rows(), n=A.num_cols();
int mmn=A.min_mn(), xmn=A.max_mn();
// resize parameters
U.resize (m,m, true, 0.0);
VT.resize(n,n, true, 0.0);
DVec* s = new DVec(mmn, 0.0, OBJ_temp, "s.TMP");
char jobu = ju;
char jobvt = jvt;
int info = 0;
// NBN: ACML does not use the work vector.
int lwork = 2 * std::max(3*mmn+xmn, 5*mmn);
DVec work(lwork, 0.0, OBJ_temp, "work.TMP");
GESVD (jobu, jobvt, m, n, A.data(), m, s->data(), U.data(), m, VT.data(), n, work.data(), lwork, info);
if (info < 0) {
(*s) = 0.0;
umERROR("SVD", "Error in input argument (%d)\nNo solution computed.", -info);
} else if (info > 0) {
(*s) = 0.0;
umLOG(1, "DBDSQR did not converge."
"\n%d superdiagonals of an intermediate bidiagonal"
"\nform B did not converge to zero.\n", info);
}
return (*s);
}
示例8: umSOLVE
// DGESV computes the solution to a real system of linear
// equations, A*x = b, where A is an N-by-N matrix, and
// x and b are N-by-1 vectors. The LU decomposition
// with partial pivoting and row interchanges is used to
// factor A as A = P*L*U, where P is a permutation matrix,
// L is unit lower triangular, and U is upper triangular.
// The system is solved using this factored form of A.
//---------------------------------------------------------
void umSOLVE(const DMat& mat, const DVec& b, DVec& x)
//---------------------------------------------------------
{
// Work with copies of input arrays.
DMat A(mat);
x = b;
int NRHS = 1;
int LDA = A.num_rows();
int rows = A.num_rows();
int cols = A.num_cols();
int info = 0;
if (rows != cols) {
umERROR("umSOLVE(DMat, DVec)",
"Matrix A (%d,%d) is not square.\n"
"For a Least-Squares solution, see umSOLVE_LS(A,B).",
rows, cols);
}
if (rows < 1) {
umLOG(1, "Empty system passed into umSOLVE().\n");
return;
}
IVec ipiv(rows, 0);
GESV (rows, NRHS, A.data(), LDA, ipiv.data(), x.data(), rows, info);
if (info < 0) {
x = 0.0;
umERROR("umSOLVE(DMat&, DVec&)",
"Error in input argument (%d)\nNo solution computed.", -info);
} else if (info > 0) {
x = 0.0;
umERROR("umSOLVE(DMat&, DVec&)",
"\nINFO = %d. U(%d,%d) was exactly zero."
"\nThe factorization has been completed, but the factor U is "
"\nexactly singular, so the solution could not be computed.",
info, info, info);
}
}
示例9: umPOLISH
//---------------------------------------------------------
void umPOLISH(DVec& V, double eps)
//---------------------------------------------------------
{
// round elements close to certain values
int N = V.size();
double *p = V.data();
for (int i=0; i<N; ++i)
{
if (fabs(p[i]) < eps)
{
p[i] = 0.0;
}
else
{
if (p[i] > 0.0)
{
// check for proximity to certain positive values
if (fabs (p[i] - 0.10) < eps) { p[i] = 0.10; }
else if (fabs (p[i] - 0.20) < eps) { p[i] = 0.20; }
else if (fabs (p[i] - 0.25) < eps) { p[i] = 0.25; }
else if (fabs (p[i] - 0.50) < eps) { p[i] = 0.50; }
else if (fabs (p[i] - 0.75) < eps) { p[i] = 0.75; }
else if (fabs (p[i] - 0.80) < eps) { p[i] = 0.80; }
else if (fabs (p[i] - 0.90) < eps) { p[i] = 0.90; }
else if (fabs (p[i] - 1.00) < eps) { p[i] = 1.00; }
else if (fabs (p[i] - 2.00) < eps) { p[i] = 2.00; }
else if (fabs (p[i] - 4.00) < eps) { p[i] = 4.00; }
else if (fabs (p[i] - 4.50) < eps) { p[i] = 4.50; }
else if (fabs (p[i] - 5.00) < eps) { p[i] = 5.00; }
else if (fabs (p[i] - M_PI ) < eps) { p[i] = M_PI ; }
else if (fabs (p[i] - M_PI_2) < eps) { p[i] = M_PI_2; }
else if (fabs (p[i] - M_PI_4) < eps) { p[i] = M_PI_4; }
else if (fabs (p[i] - M_E ) < eps) { p[i] = M_E ; }
}
else
{
// check for proximity to certain negative values
if (fabs (p[i] + 0.10) < eps) { p[i] = -0.10; }
else if (fabs (p[i] + 0.20) < eps) { p[i] = -0.20; }
else if (fabs (p[i] + 0.25) < eps) { p[i] = -0.25; }
else if (fabs (p[i] + 0.50) < eps) { p[i] = -0.50; }
else if (fabs (p[i] + 0.75) < eps) { p[i] = -0.75; }
else if (fabs (p[i] + 0.80) < eps) { p[i] = -0.80; }
else if (fabs (p[i] + 0.90) < eps) { p[i] = -0.90; }
else if (fabs (p[i] + 1.00) < eps) { p[i] = -1.00; }
else if (fabs (p[i] + 2.00) < eps) { p[i] = -2.00; }
else if (fabs (p[i] + 4.00) < eps) { p[i] = -4.00; }
else if (fabs (p[i] + 4.50) < eps) { p[i] = -4.50; }
else if (fabs (p[i] + 5.00) < eps) { p[i] = -5.00; }
else if (fabs (p[i] + M_PI ) < eps) { p[i] = -M_PI ; }
else if (fabs (p[i] + M_PI_2) < eps) { p[i] = -M_PI_2; }
else if (fabs (p[i] + M_PI_4) < eps) { p[i] = -M_PI_4; }
else if (fabs (p[i] + M_E ) < eps) { p[i] = -M_E ; }
}
}
}
}
示例10: operator
// function call ///////////////////////////////////////////////////////////////
double DoubleModel::operator()(const DVec &arg, const DVec &par) const
{
checkSize(arg.size(), par.size());
return (*this)(arg.data(), par.data());
}