本文整理汇总了C++中DImage::nchannels方法的典型用法代码示例。如果您正苦于以下问题:C++ DImage::nchannels方法的具体用法?C++ DImage::nchannels怎么用?C++ DImage::nchannels使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DImage
的用法示例。
在下文中一共展示了DImage::nchannels方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: estLaplacianNoise
void OpticalFlow::estLaplacianNoise(const DImage& Im1,const DImage& Im2,Vector<double>& para)
{
int nChannels = Im1.nchannels();
if(para.dim()!=nChannels)
para.allocate(nChannels);
else
para.reset();
double temp;
Vector<double> total(nChannels);
for(int k = 0;k<nChannels;k++)
total[k] = 0;
for(int i =0;i<Im1.npixels();i++)
for(int k = 0;k<nChannels;k++)
{
int offset = i*nChannels+k;
temp= abs(Im1.data()[offset]-Im2.data()[offset]);
if(temp>0 && temp<1000000)
{
para[k] += temp;
total[k]++;
}
}
for(int k = 0;k<nChannels;k++)
{
if(total[k]==0)
{
cout<<"All the pixels are invalid in estimation Laplacian noise!!!"<<endl;
cout<<"Something severely wrong happened!!!"<<endl;
para[k] = 0.001;
}
else
para[k]/=total[k];
}
}
示例2: estGaussianMixture
void OpticalFlow::estGaussianMixture(const DImage& Im1,const DImage& Im2,GaussianMixture& para,double prior)
{
int nIterations = 3, nChannels = Im1.nchannels();
DImage weight1(Im1),weight2(Im1);
double *total1,*total2;
total1 = new double[nChannels];
total2 = new double[nChannels];
for(int count = 0; count<nIterations; count++)
{
double temp;
memset(total1,0,sizeof(double)*nChannels);
memset(total2,0,sizeof(double)*nChannels);
// E step
for(int i = 0;i<weight1.npixels();i++)
for(int k=0;k<nChannels;k++)
{
int offset = i*weight1.nchannels()+k;
temp = Im1[offset]-Im2[offset];
temp *= temp;
weight1[offset] = para.Gaussian(temp,0,k)*para.alpha[k];
weight2[offset] = para.Gaussian(temp,1,k)*(1-para.alpha[k]);
temp = weight1[offset]+weight2[offset];
weight1[offset]/=temp;
weight2[offset]/=temp;
total1[k] += weight1[offset];
total2[k] += weight2[offset];
}
// M step
para.reset();
for(int i = 0;i<weight1.npixels();i++)
for(int k =0;k<nChannels;k++)
{
int offset = i*weight1.nchannels()+k;
temp = Im1[offset]-Im2[offset];
temp *= temp;
para.sigma[k]+= weight1[offset]*temp;
para.beta[k] += weight2[offset]*temp;
}
for(int k =0;k<nChannels;k++)
{
para.alpha[k] = total1[k]/(total1[k]+total2[k])*(1-prior)+0.95*prior; // regularize alpha
para.sigma[k] = sqrt(para.sigma[k]/total1[k]);
para.beta[k] = sqrt(para.beta[k]/total2[k])*(1-prior)+0.3*prior; // regularize beta
}
para.square();
count = count;
}
}
示例3: SanityCheck
//--------------------------------------------------------------------------------------------------------
// function to do sanity check: imdx*du+imdy*dy+imdt=0
//--------------------------------------------------------------------------------------------------------
void OpticalFlow::SanityCheck(const DImage &imdx, const DImage &imdy, const DImage &imdt, double du, double dv)
{
if(imdx.matchDimension(imdy)==false || imdx.matchDimension(imdt)==false)
{
cout<<"The dimensions of the derivatives don't match!"<<endl;
return;
}
const _FlowPrecision* pImDx,*pImDy,*pImDt;
pImDx=imdx.data();
pImDy=imdy.data();
pImDt=imdt.data();
double error=0;
for(int i=0;i<imdx.height();i++)
for(int j=0;j<imdx.width();j++)
for(int k=0;k<imdx.nchannels();k++)
{
int offset=(i*imdx.width()+j)*imdx.nchannels()+k;
double temp=pImDx[offset]*du+pImDy[offset]*dv+pImDt[offset];
error+=fabs(temp);
}
error/=imdx.nelements();
cout<<"The mean error of |dx*u+dy*v+dt| is "<<error<<endl;
}
示例4: showFlow
bool OpticalFlow::showFlow(const DImage& flow,const char* filename)
{
if(flow.nchannels()!=1)
{
cout<<"The flow must be a single channel image!"<<endl;
return false;
}
Image<unsigned char> foo;
foo.allocate(flow.width(),flow.height());
double Max = flow.max();
double Min = flow.min();
for(int i = 0;i<flow.npixels(); i++)
foo[i] = (flow[i]-Min)/(Max-Min)*255;
foo.imwrite(filename);
}
示例5: if
//---------------------------------------------------------------------------------------
// function to convert image to feature image
//---------------------------------------------------------------------------------------
void OpticalFlow::im2feature(DImage &imfeature, const DImage &im)
{
int width=im.width();
int height=im.height();
int nchannels=im.nchannels();
if(nchannels==1)
{
imfeature.allocate(im.width(),im.height(),3);
DImage imdx,imdy;
im.dx(imdx,true);
im.dy(imdy,true);
_FlowPrecision* data=imfeature.data();
for(int i=0;i<height;i++)
for(int j=0;j<width;j++)
{
int offset=i*width+j;
data[offset*3]=im.data()[offset];
data[offset*3+1]=imdx.data()[offset];
data[offset*3+2]=imdy.data()[offset];
}
}
else if(nchannels==3)
{
DImage grayImage;
im.desaturate(grayImage);
imfeature.allocate(im.width(),im.height(),5);
DImage imdx,imdy;
grayImage.dx(imdx,true);
grayImage.dy(imdy,true);
_FlowPrecision* data=imfeature.data();
for(int i=0;i<height;i++)
for(int j=0;j<width;j++)
{
int offset=i*width+j;
data[offset*5]=grayImage.data()[offset];
data[offset*5+1]=imdx.data()[offset];
data[offset*5+2]=imdy.data()[offset];
data[offset*5+3]=im.data()[offset*3+1]-im.data()[offset*3];
data[offset*5+4]=im.data()[offset*3+1]-im.data()[offset*3+2];
}
}
else
imfeature.copyData(im);
}
示例6: ParImageToIplImage
cv::Mat ParImageToIplImage(DImage& img)
{
int width = img.width();
int height = img.height();
int nChannels = img.nchannels();
if(width <= 0 || height <= 0 || nChannels != 1)
return cv::Mat();
BaseType*& pData = img.data();
cv::Mat image = cv::Mat(height, width, CV_MAKETYPE(8, 1));
for(int i = 0;i < height;i++)
{
for(int j = 0;j < width;j++)
{
image.ptr<uchar>(i)[j] = pData[i*width + j] * 255;
}
}
return image;
}
示例7: SmoothFlowSOR
//--------------------------------------------------------------------------------------------------------
// function to compute optical flow field using two fixed point iterations
// Input arguments:
// Im1, Im2: frame 1 and frame 2
// warpIm2: the warped frame 2 according to the current flow field u and v
// u,v: the current flow field, NOTICE that they are also output arguments
//
//--------------------------------------------------------------------------------------------------------
void OpticalFlow::SmoothFlowSOR(const DImage &Im1, const DImage &Im2, DImage &warpIm2, DImage &u, DImage &v,
double alpha, int nOuterFPIterations, int nInnerFPIterations, int nSORIterations)
{
// DImage mask,imdx,imdy,imdt;
DImage imdx,imdy,imdt;
int imWidth,imHeight,nChannels,nPixels;
imWidth=Im1.width();
imHeight=Im1.height();
nChannels=Im1.nchannels();
nPixels=imWidth*imHeight;
DImage du(imWidth,imHeight),dv(imWidth,imHeight);
DImage uu(imWidth,imHeight),vv(imWidth,imHeight);
DImage ux(imWidth,imHeight),uy(imWidth,imHeight);
DImage vx(imWidth,imHeight),vy(imWidth,imHeight);
DImage Phi_1st(imWidth,imHeight);
DImage Psi_1st(imWidth,imHeight,nChannels);
DImage imdxy,imdx2,imdy2,imdtdx,imdtdy;
DImage ImDxy,ImDx2,ImDy2,ImDtDx,ImDtDy;
DImage foo1,foo2;
double varepsilon_phi=pow(0.001,2);
double varepsilon_psi=pow(0.001,2);
//--------------------------------------------------------------------------
// the outer fixed point iteration
//--------------------------------------------------------------------------
for(int count=0;count<nOuterFPIterations;count++)
{
// compute the gradient
getDxs(imdx,imdy,imdt,Im1,warpIm2);
// generate the mask to set the weight of the pxiels moving outside of the image boundary to be zero
// genInImageMask(mask,u,v);
// set the derivative of the flow field to be zero
du.reset();
dv.reset();
//--------------------------------------------------------------------------
// the inner fixed point iteration
//--------------------------------------------------------------------------
for(int hh=0;hh<nInnerFPIterations;hh++)
{
// compute the derivatives of the current flow field
if(hh==0)
{
uu.copyData(u);
vv.copyData(v);
}
else
{
uu.Add(u,du);
vv.Add(v,dv);
}
uu.dx(ux);
uu.dy(uy);
vv.dx(vx);
vv.dy(vy);
// compute the weight of phi
Phi_1st.reset();
_FlowPrecision* phiData=Phi_1st.data();
double temp;
const _FlowPrecision *uxData,*uyData,*vxData,*vyData;
uxData=ux.data();
uyData=uy.data();
vxData=vx.data();
vyData=vy.data();
for(int i=0;i<nPixels;i++)
{
temp=uxData[i]*uxData[i]+uyData[i]*uyData[i]+vxData[i]*vxData[i]+vyData[i]*vyData[i];
phiData[i] = 0.5/sqrt(temp+varepsilon_phi);
}
// compute the nonlinear term of psi
Psi_1st.reset();
_FlowPrecision* psiData=Psi_1st.data();
const _FlowPrecision *imdxData,*imdyData,*imdtData;
const _FlowPrecision *duData,*dvData;
imdxData=imdx.data();
imdyData=imdy.data();
imdtData=imdt.data();
duData=du.data();
dvData=dv.data();
if(nChannels==1)
for(int i=0;i<nPixels;i++)
{
temp=imdtData[i]+imdxData[i]*duData[i]+imdyData[i]*dvData[i];
//.........这里部分代码省略.........
示例8: warpFL
void OpticalFlow::warpFL(DImage &warpIm2, const DImage &Im1, const DImage &Im2, const DImage &Flow)
{
if(warpIm2.matchDimension(Im2)==false)
warpIm2.allocate(Im2.width(),Im2.height(),Im2.nchannels());
ImageProcessing::warpImageFlow(warpIm2.data(),Im1.data(),Im2.data(),Flow.data(),Im2.width(),Im2.height(),Im2.nchannels());
}
示例9:
//--------------------------------------------------------------------------------------
// function to perfomr coarse to fine optical flow estimation
//--------------------------------------------------------------------------------------
void OpticalFlow::Coarse2FineFlow(DImage &vx, DImage &vy, DImage &warpI2,const DImage &Im1, const DImage &Im2, double alpha, double ratio, int minWidth,
int nOuterFPIterations, int nInnerFPIterations, int nCGIterations)
{
// first build the pyramid of the two images
GaussianPyramid GPyramid1;
GaussianPyramid GPyramid2;
if(IsDisplay)
cout<<"Constructing pyramid...";
GPyramid1.ConstructPyramid(Im1,ratio,minWidth);
GPyramid2.ConstructPyramid(Im2,ratio,minWidth);
if(IsDisplay)
cout<<"done!"<<endl;
// now iterate from the top level to the bottom
DImage Image1,Image2,WarpImage2;
//GaussianMixture GMPara(Im1.nchannels()+2);
// initialize noise
switch(noiseModel){
case GMixture:
GMPara.reset(Im1.nchannels()+2);
break;
case Lap:
LapPara.allocate(Im1.nchannels()+2);
for(int i = 0;i<LapPara.dim();i++)
LapPara[i] = 0.02;
break;
}
for(int k=GPyramid1.nlevels()-1;k>=0;k--)
{
if(IsDisplay)
cout<<"Pyramid level "<<k;
int width=GPyramid1.Image(k).width();
int height=GPyramid1.Image(k).height();
im2feature(Image1,GPyramid1.Image(k));
im2feature(Image2,GPyramid2.Image(k));
if(k==GPyramid1.nlevels()-1) // if at the top level
{
vx.allocate(width,height);
vy.allocate(width,height);
//warpI2.copyData(Image2);
WarpImage2.copyData(Image2);
}
else
{
vx.imresize(width,height);
vx.Multiplywith(1/ratio);
vy.imresize(width,height);
vy.Multiplywith(1/ratio);
//warpFL(warpI2,GPyramid1.Image(k),GPyramid2.Image(k),vx,vy);
if(interpolation == Bilinear)
warpFL(WarpImage2,Image1,Image2,vx,vy);
else
Image2.warpImageBicubicRef(Image1,WarpImage2,vx,vy);
}
//SmoothFlowPDE(GPyramid1.Image(k),GPyramid2.Image(k),warpI2,vx,vy,alpha,nOuterFPIterations,nInnerFPIterations,nCGIterations);
//SmoothFlowPDE(Image1,Image2,WarpImage2,vx,vy,alpha*pow((1/ratio),k),nOuterFPIterations,nInnerFPIterations,nCGIterations,GMPara);
//SmoothFlowPDE(Image1,Image2,WarpImage2,vx,vy,alpha,nOuterFPIterations,nInnerFPIterations,nCGIterations);
SmoothFlowSOR(Image1,Image2,WarpImage2,vx,vy,alpha,nOuterFPIterations+k,nInnerFPIterations,nCGIterations+k*3);
//GMPara.display();
if(IsDisplay)
cout<<endl;
}
//warpFL(warpI2,Im1,Im2,vx,vy);
Im2.warpImageBicubicRef(Im1,warpI2,vx,vy);
warpI2.threshold();
}
示例10: SmoothFlowPDE
//--------------------------------------------------------------------------------------------------------
// function to compute optical flow field using two fixed point iterations
// Input arguments:
// Im1, Im2: frame 1 and frame 2
// warpIm2: the warped frame 2 according to the current flow field u and v
// u,v: the current flow field, NOTICE that they are also output arguments
//
//--------------------------------------------------------------------------------------------------------
void OpticalFlow::SmoothFlowPDE(const DImage &Im1, const DImage &Im2, DImage &warpIm2, DImage &u, DImage &v,
double alpha, int nOuterFPIterations, int nInnerFPIterations, int nCGIterations)
{
DImage mask,imdx,imdy,imdt;
int imWidth,imHeight,nChannels,nPixels;
imWidth=Im1.width();
imHeight=Im1.height();
nChannels=Im1.nchannels();
nPixels=imWidth*imHeight;
DImage du(imWidth,imHeight),dv(imWidth,imHeight);
DImage uu(imWidth,imHeight),vv(imWidth,imHeight);
DImage ux(imWidth,imHeight),uy(imWidth,imHeight);
DImage vx(imWidth,imHeight),vy(imWidth,imHeight);
DImage Phi_1st(imWidth,imHeight);
DImage Psi_1st(imWidth,imHeight,nChannels);
DImage imdxy,imdx2,imdy2,imdtdx,imdtdy;
DImage ImDxy,ImDx2,ImDy2,ImDtDx,ImDtDy;
DImage A11,A12,A22,b1,b2;
DImage foo1,foo2;
// compute bicubic interpolation coeff
//DImage BicubicCoeff;
//Im2.warpImageBicubicCoeff(BicubicCoeff);
double prob1,prob2,prob11,prob22;
// variables for conjugate gradient
DImage r1,r2,p1,p2,q1,q2;
double* rou;
rou=new double[nCGIterations];
double varepsilon_phi=pow(0.001,2);
double varepsilon_psi=pow(0.001,2);
//--------------------------------------------------------------------------
// the outer fixed point iteration
//--------------------------------------------------------------------------
for(int count=0;count<nOuterFPIterations;count++)
{
// compute the gradient
getDxs(imdx,imdy,imdt,Im1,warpIm2);
// generate the mask to set the weight of the pxiels moving outside of the image boundary to be zero
genInImageMask(mask,u,v);
// set the derivative of the flow field to be zero
du.reset();
dv.reset();
//--------------------------------------------------------------------------
// the inner fixed point iteration
//--------------------------------------------------------------------------
for(int hh=0;hh<nInnerFPIterations;hh++)
{
// compute the derivatives of the current flow field
if(hh==0)
{
uu.copyData(u);
vv.copyData(v);
}
else
{
uu.Add(u,du);
vv.Add(v,dv);
}
uu.dx(ux);
uu.dy(uy);
vv.dx(vx);
vv.dy(vy);
// compute the weight of phi
Phi_1st.reset();
_FlowPrecision* phiData=Phi_1st.data();
_FlowPrecision temp;
const _FlowPrecision *uxData,*uyData,*vxData,*vyData;
uxData=ux.data();
uyData=uy.data();
vxData=vx.data();
vyData=vy.data();
double power_alpha = 0.5;
for(int i=0;i<nPixels;i++)
{
temp=uxData[i]*uxData[i]+uyData[i]*uyData[i]+vxData[i]*vxData[i]+vyData[i]*vyData[i];
//phiData[i]=power_alpha*pow(temp+varepsilon_phi,power_alpha-1);
phiData[i] = 0.5/sqrt(temp+varepsilon_phi);
//phiData[i] = 1/(power_alpha+temp);
}
// compute the nonlinear term of psi
Psi_1st.reset();
_FlowPrecision* psiData=Psi_1st.data();
const _FlowPrecision *imdxData,*imdyData,*imdtData;
//.........这里部分代码省略.........
示例11: SmoothFlowSOR
//--------------------------------------------------------------------------------------------------------
// function to compute optical flow field using two fixed point iterations
// Input arguments:
// Im1, Im2: frame 1 and frame 2
// warpIm2: the warped frame 2 according to the current flow field u and v
// u,v: the current flow field, NOTICE that they are also output arguments
//
//--------------------------------------------------------------------------------------------------------
void OpticalFlow::SmoothFlowSOR(const DImage &Im1, const DImage &Im2, DImage &warpIm2, DImage &u, DImage &v,
double alpha, int nOuterFPIterations, int nInnerFPIterations, int nSORIterations)
{
DImage mask,imdx,imdy,imdt;
int imWidth,imHeight,nChannels,nPixels;
imWidth=Im1.width();
imHeight=Im1.height();
nChannels=Im1.nchannels();
nPixels=imWidth*imHeight;
DImage du(imWidth,imHeight),dv(imWidth,imHeight);
DImage uu(imWidth,imHeight),vv(imWidth,imHeight);
DImage ux(imWidth,imHeight),uy(imWidth,imHeight);
DImage vx(imWidth,imHeight),vy(imWidth,imHeight);
DImage Phi_1st(imWidth,imHeight);
DImage Psi_1st(imWidth,imHeight,nChannels);
DImage imdxy,imdx2,imdy2,imdtdx,imdtdy;
DImage ImDxy,ImDx2,ImDy2,ImDtDx,ImDtDy;
DImage foo1,foo2;
double prob1,prob2,prob11,prob22;
double varepsilon_phi=pow(0.001,2);
double varepsilon_psi=pow(0.001,2);
//--------------------------------------------------------------------------
// the outer fixed point iteration
//--------------------------------------------------------------------------
for(int count=0;count<nOuterFPIterations;count++)
{
// compute the gradient
getDxs(imdx,imdy,imdt,Im1,warpIm2);
// generate the mask to set the weight of the pxiels moving outside of the image boundary to be zero
genInImageMask(mask,u,v);
// set the derivative of the flow field to be zero
du.reset();
dv.reset();
//--------------------------------------------------------------------------
// the inner fixed point iteration
//--------------------------------------------------------------------------
for(int hh=0;hh<nInnerFPIterations;hh++)
{
// compute the derivatives of the current flow field
if(hh==0)
{
uu.copyData(u);
vv.copyData(v);
}
else
{
uu.Add(u,du);
vv.Add(v,dv);
}
uu.dx(ux);
uu.dy(uy);
vv.dx(vx);
vv.dy(vy);
// compute the weight of phi
Phi_1st.reset();
_FlowPrecision* phiData=Phi_1st.data();
double temp;
const _FlowPrecision *uxData,*uyData,*vxData,*vyData;
uxData=ux.data();
uyData=uy.data();
vxData=vx.data();
vyData=vy.data();
double power_alpha = 0.5;
for(int i=0;i<nPixels;i++)
{
temp=uxData[i]*uxData[i]+uyData[i]*uyData[i]+vxData[i]*vxData[i]+vyData[i]*vyData[i];
//phiData[i]=power_alpha*pow(temp+varepsilon_phi,power_alpha-1);
phiData[i] = 0.5/sqrt(temp+varepsilon_phi);
//phiData[i] = 1/(power_alpha+temp);
}
// compute the nonlinear term of psi
Psi_1st.reset();
_FlowPrecision* psiData=Psi_1st.data();
const _FlowPrecision *imdxData,*imdyData,*imdtData;
const _FlowPrecision *duData,*dvData;
imdxData=imdx.data();
imdyData=imdy.data();
imdtData=imdt.data();
duData=du.data();
dvData=dv.data();
double _a = 10000, _b = 0.1;
//.........这里部分代码省略.........