本文整理汇总了C++中CvANN_MLP::train方法的典型用法代码示例。如果您正苦于以下问题:C++ CvANN_MLP::train方法的具体用法?C++ CvANN_MLP::train怎么用?C++ CvANN_MLP::train使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CvANN_MLP
的用法示例。
在下文中一共展示了CvANN_MLP::train方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mlp
void mlp ( cv :: Mat & trainingData , cv :: Mat & trainingClasses , cv :: Mat & testData , cv :: Mat &testClasses ) {
cv :: Mat layers = cv :: Mat (4 , 1 , CV_32SC1 ) ;
layers . row (0) = cv :: Scalar (2) ;
layers . row (1) = cv :: Scalar (10) ;
layers . row (2) = cv :: Scalar (15) ;
layers . row (3) = cv :: Scalar (1) ;
CvANN_MLP mlp ;
CvANN_MLP_TrainParams params;
CvTermCriteria criteria ;
criteria.max_iter = 100;
criteria.epsilon = 0.00001f ;
criteria.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS ;
params.train_method = CvANN_MLP_TrainParams :: BACKPROP ;
params.bp_dw_scale = 0.05f;
params.bp_moment_scale = 0.05f;
params.term_crit = criteria;
mlp.create ( layers ) ;
// train
mlp.train ( trainingData , trainingClasses , cv :: Mat () , cv :: Mat () , params ) ;
cv::Mat response (1 , 1 , CV_32FC1 ) ;
cv::Mat predicted ( testClasses . rows , 1 , CV_32F ) ;
for ( int i = 0; i < testData . rows ; i ++) {
cv :: Mat response (1 , 1 , CV_32FC1 ) ;
cv :: Mat sample = testData . row ( i ) ;
mlp . predict ( sample , response ) ;
predicted . at < float >( i ,0) = response . at < float >(0 ,0) ;
}
cout << " Accuracy_ { MLP } = " << evaluate ( predicted , testClasses ) << endl ;
plot_binary ( testData , predicted , " Predictions Backpropagation " ) ;
}
示例2: train
void train(Mat TrainData, Mat classes, int nlayers){
Mat layers(1,3,CV_32SC1);
layers.at<int>(0)= TrainData.cols;
layers.at<int>(1)= nlayers;
layers.at<int>(2)= numberCharacters;
ann.create(layers, CvANN_MLP::SIGMOID_SYM, 1, 1);
//Prepare trainClases
//Create a mat with n trained data by m classes
Mat trainClasses;
trainClasses.create( TrainData.rows, numberCharacters, CV_32FC1 );
for( int i = 0; i < trainClasses.rows; i++ )
{
for( int k = 0; k < trainClasses.cols; k++ )
{
//If class of data i is same than a k class
if( k == classes.at<int>(i) )
trainClasses.at<float>(i,k) = 1;
else
trainClasses.at<float>(i,k) = 0;
}
}
Mat weights( 1, TrainData.rows, CV_32FC1, Scalar::all(1) );
//Learn classifier
ann.train( TrainData, trainClasses, weights );
}
示例3: annTrain
void annTrain(Mat TrainData, Mat classes, int nNeruns) {
ann.clear();
Mat layers(1, 3, CV_32SC1);
layers.at<int>(0) = TrainData.cols;
layers.at<int>(1) = nNeruns;
layers.at<int>(2) = numAll;
ann.create(layers, CvANN_MLP::SIGMOID_SYM, 1, 1);
// Prepare trainClases
// Create a mat with n trained data by m classes
Mat trainClasses;
trainClasses.create(TrainData.rows, numAll, CV_32FC1);
for (int i = 0; i < trainClasses.rows; i++) {
for (int k = 0; k < trainClasses.cols; k++) {
// If class of data i is same than a k class
if (k == classes.at<int>(i))
trainClasses.at<float>(i, k) = 1;
else
trainClasses.at<float>(i, k) = 0;
}
}
Mat weights(1, TrainData.rows, CV_32FC1, Scalar::all(1));
// Learn classifier
// ann.train( TrainData, trainClasses, weights );
// Setup the BPNetwork
// Set up BPNetwork's parameters
CvANN_MLP_TrainParams params;
params.train_method = CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale = 0.1;
params.bp_moment_scale = 0.1;
// params.train_method=CvANN_MLP_TrainParams::RPROP;
// params.rp_dw0 = 0.1;
// params.rp_dw_plus = 1.2;
// params.rp_dw_minus = 0.5;
// params.rp_dw_min = FLT_EPSILON;
// params.rp_dw_max = 50.;
ann.train(TrainData, trainClasses, Mat(), Mat(), params);
}
示例4: Train_mlp
void Model::Train_mlp( const SampleSet& samples )
{
CvANN_MLP* model = (CvANN_MLP*)m_pModel;
CvANN_MLP_TrainParams* para = (CvANN_MLP_TrainParams*)m_trainPara;
int dim = samples.Dim();
vector<float> classes = samples.Classes();
cv::Mat layerSize = (cv::Mat_<int>(1, 3) << dim, 100, classes.size());
model->create(layerSize);
cv::Mat newLaybels = cv::Mat::zeros(samples.N(), classes.size(), CV_32F);
for (int n=0; n<samples.N(); n++)
{
int label = samples.GetLabelAt(n);
for (int c=0; c<classes.size(); c++)
{
if (label == classes[c])
newLaybels.at<float>(n, c) = 1.0f;
}
}
model->train(samples.Samples(), newLaybels, cv::Mat::ones(samples.N(), 1, CV_32F), cv::Mat(), *para);
}
示例5: On_Execute
//---------------------------------------------------------
bool COpenCV_NNet::On_Execute(void)
{
//-------------------------------------------------
bool b_updateWeights, b_noInputScale, b_noOutputScale, b_NoData;
int i_matType, i_layers, i_maxIter, i_neurons, i_areasClassId, i_trainFeatTotalCount, *i_outputFeatureIdxs, i_outputFeatureCount, i_Grid, x, y, i_evalOut, i_winner;
double d_alpha, d_beta, d_eps;
DATA_TYPE e_dataType;
TRAINING_METHOD e_trainMet;
ACTIVATION_FUNCTION e_actFunc;
CSG_Table *t_Weights, *t_Indices, *t_TrainInput, *t_EvalInput, *t_EvalOutput;
CSG_Parameter_Grid_List *gl_TrainInputs;
CSG_Grid *g_EvalOutput, *g_EvalOutputCert;
CSG_Shapes *s_TrainInputAreas;
CSG_Parameters *p_TrainFeatures;
TSG_Point p;
CvMat *mat_Weights, *mat_Indices, **mat_data, *mat_neuralLayers, mat_layerSizesSub, *mat_EvalInput, *mat_EvalOutput; // todo: mat_indices to respect input indices, mat_weights for initialization
CvANN_MLP_TrainParams tp_trainParams;
CvANN_MLP model;
b_updateWeights = Parameters("UPDATE_WEIGHTS" )->asBool();
b_noInputScale = Parameters("NO_INPUT_SCALE" )->asBool();
b_noOutputScale = Parameters("NO_OUTPUT_SCALE" )->asBool();
i_layers = Parameters("NNET_LAYER" )->asInt();
i_neurons = Parameters("NNET_NEURONS" )->asInt();
i_maxIter = Parameters("MAX_ITER" )->asInt();
i_areasClassId = Parameters("TRAIN_INPUT_AREAS_CLASS_FIELD" )->asInt();
e_dataType = (DATA_TYPE)Parameters("DATA_TYPE" )->asInt();
e_trainMet = (TRAINING_METHOD)Parameters("TRAINING_METHOD" )->asInt();
e_actFunc = (ACTIVATION_FUNCTION)Parameters("ACTIVATION_FUNCTION" )->asInt();
d_alpha = Parameters("ALPHA" )->asDouble();
d_beta = Parameters("BETA" )->asDouble();
d_eps = Parameters("EPSILON" )->asDouble();
t_Weights = Parameters("WEIGHTS" )->asTable();
t_Indices = Parameters("INDICES" )->asTable();
t_TrainInput = Parameters("TRAIN_INPUT_TABLE" )->asTable();
t_EvalInput = Parameters("EVAL_INPUT_TABLE" )->asTable();
t_EvalOutput = Parameters("EVAL_OUTPUT_TABLE" )->asTable();
p_TrainFeatures = Parameters("TRAIN_FEATURES_TABLE" )->asParameters();
gl_TrainInputs = Parameters("TRAIN_INPUT_GRIDS" )->asGridList();
g_EvalOutput = Parameters("EVAL_OUTPUT_GRID_CLASSES" )->asGrid();
g_EvalOutputCert = Parameters("EVAL_OUTPUT_GRID_CERTAINTY" )->asGrid();
s_TrainInputAreas = Parameters("TRAIN_INPUT_AREAS" )->asShapes();
// Fixed matrix type (TODO: Analyze what to do for other types of data (i.e. images))
i_matType = CV_32FC1;
//-------------------------------------------------
if (e_dataType == TABLE)
{
// We are working with TABLE data
if( t_TrainInput->Get_Count() == 0 || p_TrainFeatures->Get_Count() == 0 )
{
Error_Set(_TL("Select an input table and at least one output feature!"));
return( false );
}
// Count the total number of available features
i_trainFeatTotalCount = t_TrainInput->Get_Field_Count();
// Count the number of selected output features
i_outputFeatureIdxs = (int *)SG_Calloc(i_trainFeatTotalCount, sizeof(int));
i_outputFeatureCount = 0;
for(int i=0; i<p_TrainFeatures->Get_Count(); i++)
{
if( p_TrainFeatures->Get_Parameter(i)->asBool() )
{
i_outputFeatureIdxs[i_outputFeatureCount++] = CSG_String(p_TrainFeatures->Get_Parameter(i)->Get_Identifier()).asInt();
}
}
// Update the number of training features
i_trainFeatTotalCount = i_trainFeatTotalCount-i_outputFeatureCount;
if( i_outputFeatureCount <= 0 )
{
Error_Set(_TL("Select at least one output feature!"));
return( false );
}
// Now convert the input and output training data into a OpenCV matrix objects
mat_data = GetTrainAndOutputMatrix(t_TrainInput, i_matType, i_outputFeatureIdxs, i_outputFeatureCount);
}
else
{
// TODO: Add some grid validation logic
i_trainFeatTotalCount = gl_TrainInputs->Get_Count();
i_outputFeatureCount = s_TrainInputAreas->Get_Count();
// Convert the data from the grid into the matrix from
mat_data = GetTrainAndOutputMatrix(gl_TrainInputs, i_matType, s_TrainInputAreas, i_areasClassId, g_EvalOutput, g_EvalOutputCert);
}
//-------------------------------------------------
// Add two additional layer to the network topology (0-th layer for input and the last as the output)
i_layers = i_layers + 2;
mat_neuralLayers = cvCreateMat(i_layers, 1, CV_32SC1);
cvGetRows(mat_neuralLayers, &mat_layerSizesSub, 0, i_layers);
//.........这里部分代码省略.........
示例6: trainMachine
// Read the training data and train the network.
void trainMachine()
{
int i;
//The number of training samples.
int train_sample_count = 130;
//The training data matrix.
float td[130][61];
//Read the training file
FILE *fin;
fin = fopen("data/sonar_train.csv", "r");
//Create the matrices
//Input data samples. Matrix of order (train_sample_count x 60)
CvMat* trainData = cvCreateMat(train_sample_count, 60, CV_32FC1);
//Output data samples. Matrix of order (train_sample_count x 1)
CvMat* trainClasses = cvCreateMat(train_sample_count, 1, CV_32FC1);
//The weight of each training data sample. We'll later set all to equal weights.
CvMat* sampleWts = cvCreateMat(train_sample_count, 1, CV_32FC1);
//The matrix representation of our ANN. We'll have four layers.
CvMat* neuralLayers = cvCreateMat(4, 1, CV_32SC1);
//Setting the number of neurons on each layer of the ANN
/*
We have in Layer 1: 60 neurons (60 inputs)
Layer 2: 150 neurons (hidden layer)
Layer 3: 225 neurons (hidden layer)
Layer 4: 1 neurons (1 output)
*/
cvSet1D(neuralLayers, 0, cvScalar(60));
cvSet1D(neuralLayers, 1, cvScalar(150));
cvSet1D(neuralLayers, 2, cvScalar(225));
cvSet1D(neuralLayers, 3, cvScalar(1));
//Read and populate the samples.
for (i=0;i<train_sample_count;i++)
fscanf(fin,"%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f",
&td[i][0],&td[i][1],&td[i][2],&td[i][3],&td[i][4],&td[i][5],&td[i][6],&td[i][7],&td[i][8],&td[i][9],&td[i][10],&td[i][11],&td[i][12],&td[i][13],&td[i][14],&td[i][15],&td[i][16],&td[i][17],&td[i][18],&td[i][19],&td[i][20],&td[i][21],&td[i][22],&td[i][23],&td[i][24],&td[i][25],&td[i][26],&td[i][27],&td[i][28],&td[i][29],&td[i][30],&td[i][31],&td[i][32],&td[i][33],&td[i][34],&td[i][35],&td[i][36],&td[i][37],&td[i][38],&td[i][39],&td[i][40],&td[i][41],&td[i][42],&td[i][43],&td[i][44],&td[i][45],&td[i][46],&td[i][47],&td[i][48],&td[i][49],&td[i][50],&td[i][51],&td[i][52],&td[i][53],&td[i][54],&td[i][55],&td[i][56],&td[i][57],&td[i][58],&td[i][59],&td[i][60]);
//we are done reading the file, so close it
fclose(fin);
//Assemble the ML training data.
for (i=0; i<train_sample_count; i++)
{
//inputs
for (int j = 0; j < 60; j++)
cvSetReal2D(trainData, i, j, td[i][j]);
//Output
cvSet1D(trainClasses, i, cvScalar(td[i][60]));
//Weight (setting everything to 1)
cvSet1D(sampleWts, i, cvScalar(1));
}
//Create our ANN.
ann.create(neuralLayers);
cout << "training...\n";
//Train it with our data.
ann.train(
trainData,
trainClasses,
sampleWts,
0,
CvANN_MLP_TrainParams(
cvTermCriteria(
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
100000,
0.000001),
CvANN_MLP_TrainParams::BACKPROP,
0.01,
0.05));
}
示例7: if
// Train
void *train(Mat &trainData, Mat &response)
{
if(conf.classifier == "SVM")
{
std::cout<<"--->SVM Training ..."<<std::endl;
CvSVMParams params;
params.kernel_type = CvSVM::LINEAR;
params.svm_type = CvSVM::C_SVC;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,1000,1e-6);
CvSVM *classifier = new CvSVM;
classifier->train(trainData,response,Mat(),Mat(),params);
int c = classifier->get_support_vector_count();
printf(" %d support vectors founded.\n",c);
return (void *)classifier;
}
else if(conf.classifier == "BP")
{
std::cout<<"--->BP Training ..."<<std::endl;
// Data transforming.
int numClass = (int)conf.classes.size();
cv::Mat labelMat = Mat::zeros(response.rows, numClass, CV_32F);
for(int i = 0;i<response.rows;i++)
{
int k = response.ptr<int>()[i];
labelMat.ptr<float>(i)[k-1] = 1.0;
}
// Set up BP network parameters
CvANN_MLP_TrainParams params;
params.term_crit = cvTermCriteria( CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, 0.01 ),
params.train_method = CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale = 0.1;
params.bp_moment_scale = 0.1;
CvANN_MLP *classifier = new CvANN_MLP;
// Set up the topology structure of BP network.
int inputNodeNum = trainData.cols;
float ratio = 2;
int hiddenNodeNum = static_cast<float>(inputNodeNum) * ratio;
int outputNodeNum = numClass;
int maxHiddenLayersNum = 1;
// It could be better! esp. Output node amount
printf(" %d input nodes, %d output nodes.\n",inputNodeNum, outputNodeNum);
Mat layerSizes;
layerSizes.push_back(inputNodeNum);
printf(" Hidden layers nodes' amount:");
layerSizes.push_back(hiddenNodeNum);
for(int i = 0 ;i<maxHiddenLayersNum;i++)
{
if(hiddenNodeNum > outputNodeNum * ratio + 1 )
{
hiddenNodeNum = static_cast<float>(hiddenNodeNum) / ratio;
layerSizes.push_back(hiddenNodeNum);
printf(" %d ",hiddenNodeNum);
}
else
break;
}
printf("\n");
layerSizes.push_back(outputNodeNum);
classifier->create(layerSizes, CvANN_MLP::SIGMOID_SYM);
classifier->train(trainData, labelMat, Mat(),Mat(), params);
return (void *)classifier;
}
else{
std::cout<<"--->Error: wrong classifier."<<std::endl;
return NULL;
}
}
示例8: cv_ann
int cv_ann()
{
//Setup the BPNetwork
CvANN_MLP bp;
// Set up BPNetwork's parameters
CvANN_MLP_TrainParams params;
params.train_method=CvANN_MLP_TrainParams::BACKPROP; //(Back Propagation,BP)反向传播算法
params.bp_dw_scale=0.1;
params.bp_moment_scale=0.1;
// Set up training data
float labels[10][2] = {{0.9,0.1},{0.1,0.9},{0.9,0.1},{0.1,0.9},{0.9,0.1},{0.9,0.1},{0.1,0.9},{0.1,0.9},{0.9,0.1},{0.9,0.1}};
//这里对于样本标记为0.1和0.9而非0和1,主要是考虑到sigmoid函数的输出为一般为0和1之间的数,只有在输入趋近于-∞和+∞才逐渐趋近于0和1,而不可能达到。
Mat labelsMat(10, 2, CV_32FC1, labels);
float trainingData[10][2] = { {11,12},{111,112}, {21,22}, {211,212},{51,32}, {71,42}, {441,412},{311,312}, {41,62}, {81,52} };
Mat trainingDataMat(10, 2, CV_32FC1, trainingData);
Mat layerSizes=(Mat_<int>(1,5) << 2, 2, 2, 2, 2); //5层:输入层,3层隐藏层和输出层,每层均为两个perceptron
bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);//CvANN_MLP::SIGMOID_SYM ,选用sigmoid作为激励函数
bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params); //训练
// Data for visual representation
int width = 512, height = 512;
Mat image = Mat::zeros(height, width, CV_8UC3);
Vec3b green(0,255,0), blue (255,0,0);
// Show the decision regions
for (int i = 0; i < image.rows; ++i)
{
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << i,j);
Mat responseMat;
bp.predict(sampleMat,responseMat);
float* p=responseMat.ptr<float>(0);
//
if (p[0] > p[1])
{
image.at<Vec3b>(j, i) = green;
}
else
{
image.at<Vec3b>(j, i) = blue;
}
}
}
// Show the training data
int thickness = -1;
int lineType = 8;
circle( image, Point(111, 112), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(211, 212), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(441, 412), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(311, 312), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(11, 12), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(21, 22), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(51, 32), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(71, 42), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(41, 62), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(81, 52), 5, Scalar(255, 255, 255), thickness, lineType);
imwrite("result.png", image); // save the image
imshow("BP Simple Example", image); // show it to the user
waitKey(0);
return 0;
}
示例9: excuteTrain
int CTrain::excuteTrain()
{
// 读入结果responses 特征data
FILE* f = fopen( "batch", "rb" );
fseek(f, 0l, SEEK_END);
long size = ftell(f);
fseek(f, 0l, SEEK_SET);
int count = size/4/(36+256);
CvMat* batch = cvCreateMat( count, 36+256, CV_32F );
fread(batch->data.fl, size-1, 1, f);
CvMat outputs, inputs;
cvGetCols(batch, &outputs, 0, 36);
cvGetCols(batch, &inputs, 36, 36+256);
fclose(f);
// 新建MPL
CvANN_MLP mlp;
int layer_sz[] = { 256, 20, 36 };
CvMat layer_sizes = cvMat( 1, 3, CV_32S, layer_sz );
mlp.create( &layer_sizes );
// 训练
//system( "time" );
mlp.train( &inputs, &outputs, NULL, NULL,
CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01), CvANN_MLP_TrainParams::RPROP, 0.01)
);
//system( "time" );
// 存储MPL
mlp.save( "mpl.xml" );
// 测试
int right = 0;
CvMat* output = cvCreateMat( 1, 36, CV_32F );
for(int i=0; i<count; i++)
{
CvMat input;
cvGetRow( &inputs, &input, i );
mlp.predict( &input, output );
CvPoint max_loc = {0,0};
cvMinMaxLoc( output, NULL, NULL, NULL, &max_loc, NULL );
int best = max_loc.x;// 识别结果
int ans = -1;// 实际结果
for(int j=0; j<36; j++)
{
if( outputs.data.fl[i*(outputs.step/4)+j] == 1.0f )
{
ans = j;
break;
}
}
cout<<(char)( best<10 ? '0'+best : 'A'+best-10 );
cout<<(char)( ans<10 ? '0'+ans : 'A'+ans-10 );
if( best==ans )
{
cout<<"+";
right++;
}
//cin.get();
cout<<endl;
}
cvReleaseMat( &output );
cout<<endl<<right<<"/"<<count<<endl;
cvReleaseMat( &batch );
system( "pause" );
return 0;
}
示例10: main
//.........这里部分代码省略.........
double * indef = ExDirectoria("exterior/treino", 11, "caso2");
contador=0;
for (int i = 0; i<=11*410; i++) {
if(contador==410) {
contador = 0;
if(i!=11*410) {
fputs("indefenido\n", pFile);
x= std::to_string(indef[i]).c_str();
stri = ( x+ ",");
fputs(stri.c_str(), pFile);
contador++;
}
} else {
x= std::to_string(indef[i]).c_str();
stri = ( x+ ",");
fputs(stri.c_str(), pFile);
contador++;
}
}
fputs("indefenido\n", pFile);
for (int i = 0; i<11*410; i++) {
treino[i+(410*(49+26+58))] = indef[i];
printf("%d TREINO - %.2f \n",i+(410*(49+26+58)),treino[i+(410*(49+26+58))]);
}
float labels[144];
float trainingData[144][410];
int cont = 0;
for(int i = 0; i<144; i++) {
// printf("I - %d \n",i);
if(i < 49) {
labels[i] = 1;
} else if(i >= 49 && i<75) {
labels[i] = 2;
} else if(i >= 75 && i<133) {
labels[i] = 3;
} else {
labels[i] = 4;
}
for (int j = 0; j< 410; j++) {
trainingData[i][j] = treino[(410*cont)+j];
//printf("J*i - %d \n",j*i);
// printf("trainingData - %.2f",trainingData[i][j]);
if (j==409) {
cont=cont+1;
}
}
}
cv::Mat layers = cv::Mat(11, 1, CV_32S);
示例11: main
int main()
{
const int sampleTypeCount = 7; //共有几种字体
const int sampleCount = 50; //每种字体的样本数
const int sampleAllCount = sampleCount*sampleTypeCount;
const int featureCount = 256; //特征维数
CvANN_MLP bp;// = CvANN_MLP(layerSizes,CvANN_MLP::SIGMOID_SYM,1,1);
string str_dir[sampleTypeCount];
str_dir[0] = "A水滴渍";
str_dir[1] = "B水纹";
str_dir[2] = "C指纹";
str_dir[3] = "D釉面凹凸";
str_dir[4] = "X凹点";
str_dir[5] = "Y杂质";
str_dir[6] = "Z划痕";
float trainingData[sampleAllCount][featureCount] = { 0 };
float outputData[sampleAllCount][sampleTypeCount] = { 0 };
int itemIndex = 0;
for (int index = 0; index < 7; index++)
{
for (int i = 1; i <= 50; i++)
{
outputData[itemIndex][index] = 1;
cout << str_dir[index] << "_" << i << endl;
stringstream ss;
char num[4];
sprintf(num, "%03d", i);
ss << "特征样本库\\" << str_dir[index] << "\\" << num << ".jpg";
string path;
ss >> path;
//读取灰度图像以便计算灰度直方图
cv::Mat f = cv::imread(path, 0);
cv::Mat grayHist;
// 设定bin数目,也就是灰度级别,这里选择的是0-255灰度
int histSize = 256;
//cv::equalizeHist(f, f);
cv::normalize(f, f, histSize, 0, cv::NORM_MINMAX);
//cv::bitwise_xor(f, cv::Scalar(255), f);//反相
FeatureMaker::GetGrayHist(f, grayHist, histSize);
for (int j = 0; j < 256; j++)
{
trainingData[itemIndex][j] = grayHist.ptr<float>(j)[0];
}
itemIndex++;
}
}
//创建一个网络
cv::Mat layerSizes = (cv::Mat_<int>(1, 3) << featureCount, 25, sampleTypeCount);//创建一个featureCount输入 IDC_EDIT_YinCangCount隐藏 sampleTypeCount输出的三层网络
CvANN_MLP_TrainParams param;
param.term_crit = cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 50000, 0.002);
param.train_method = CvANN_MLP_TrainParams::BACKPROP;
param.bp_dw_scale = 0.01;//权值更新率
param.bp_moment_scale = 0.03;//权值更新冲量
cv::Mat inputs(sampleAllCount, featureCount, CV_32FC1, trainingData);//样品总数,特征维数,储存的数据类型
cv::Mat outputs(sampleAllCount, sampleTypeCount, CV_32FC1, outputData);
bp.create(layerSizes, CvANN_MLP::SIGMOID_SYM);
bp.train(inputs, outputs, cv::Mat(), cv::Mat(), param);
bp.save("ANN_mlp.xml");
itemIndex = 0;
int zhengque = 0;
for (int index = 0; index < 7; index++)
{
for (int i = 1; i <= 50; i++)
{
cv::Mat sampleMat(1, featureCount, CV_32FC1, trainingData[itemIndex]);//样品总数,特征维数,储存的数据类型
cv::Mat nearest(1, sampleTypeCount, CV_32FC1, cv::Scalar(0));
bp.predict(sampleMat, nearest);
float possibility = -1;
int outindex = 0;
for (int i = 0; i < nearest.size().width; i++){
float x = nearest.at<float>(0, i);
if (x>possibility){
possibility = x;
outindex = i;
}
}
if (outindex == index)
zhengque++;
cout << str_dir[index] << "_" << i << ":" << outindex << "->" << possibility << "->" << str_dir[outindex] << endl;
itemIndex++;
}
}
//.........这里部分代码省略.........
示例12: trainMachine
// Read the training data and train the network.
void trainMachine()
{ int i; //The number of training samples.
int train_sample_count;
//The training data matrix.
//Note that we are limiting the number of training data samples to 1000 here.
//The data sample consists of two inputs and an output. That's why 3.
float td[10000][3];
//Read the training file
/*
A sample file contents(say we are training the network for generating
the mean given two numbers) would be:
5
12 16 14
10 5 7.5
8 10 9
5 4 4.5
12 6 9
*/
FILE *fin;
fin = fopen("train.txt", "r");
//Get the number of samples.
fscanf(fin, "%d", &train_sample_count);
printf("Found training file with %d samples...\n", train_sample_count);
//Create the matrices
//Input data samples. Matrix of order (train_sample_count x 2)
CvMat* trainData = cvCreateMat(train_sample_count, 2, CV_32FC1);
//Output data samples. Matrix of order (train_sample_count x 1)
CvMat* trainClasses = cvCreateMat(train_sample_count, 1, CV_32FC1);
//The weight of each training data sample. We'll later set all to equal weights.
CvMat* sampleWts = cvCreateMat(train_sample_count, 1, CV_32FC1);
//The matrix representation of our ANN. We'll have four layers.
CvMat* neuralLayers = cvCreateMat(4, 1, CV_32SC1);
CvMat trainData1, trainClasses1, neuralLayers1, sampleWts1;
cvGetRows(trainData, &trainData1, 0, train_sample_count);
cvGetRows(trainClasses, &trainClasses1, 0, train_sample_count);
cvGetRows(trainClasses, &trainClasses1, 0, train_sample_count);
cvGetRows(sampleWts, &sampleWts1, 0, train_sample_count);
cvGetRows(neuralLayers, &neuralLayers1, 0, 4);
//Setting the number of neurons on each layer of the ANN
/*
We have in Layer 1: 2 neurons (2 inputs)
Layer 2: 3 neurons (hidden layer)
Layer 3: 3 neurons (hidden layer)
Layer 4: 1 neurons (1 output)
*/
cvSet1D(&neuralLayers1, 0, cvScalar(2));
cvSet1D(&neuralLayers1, 1, cvScalar(3));
cvSet1D(&neuralLayers1, 2, cvScalar(3));
cvSet1D(&neuralLayers1, 3, cvScalar(1));
//Read and populate the samples.
for (i=0;i<train_sample_count;i++)
fscanf(fin,"%f %f %f",&td[i][0],&td[i][1],&td[i][2]);
fclose(fin);
//Assemble the ML training data.
for (i=0; i<train_sample_count; i++)
{
//Input 1
cvSetReal2D(&trainData1, i, 0, td[i][0]);
//Input 2
cvSetReal2D(&trainData1, i, 1, td[i][1]);
//Output
cvSet1D(&trainClasses1, i, cvScalar(td[i][2]));
//Weight (setting everything to 1)
cvSet1D(&sampleWts1, i, cvScalar(1));
}
//Create our ANN.
machineBrain.create(neuralLayers);//sigmoid 0 0(激活函数的两个参数)
//Train it with our data.
machineBrain.train(
trainData,//输入
trainClasses,//输出
sampleWts,//输入项的权值
0,
CvANN_MLP_TrainParams(
cvTermCriteria(
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,///类型 CV_TERMCRIT_ITER 和CV_TERMCRIT_EPS二值之一,或者二者的组合
10000000,//最大迭代次数
0.00000001//结果的精确性 两次迭代间权值变化量
),
CvANN_MLP_TrainParams::BACKPROP,//BP算法
0.01,//几个可显式调整的参数 学习速率 阿尔法
//.........这里部分代码省略.........
示例13: on_pushButton_test_clicked
void MainWindow::on_pushButton_test_clicked()
{
QString str = QFileDialog::getExistingDirectory();
QByteArray ba = str.toLocal8Bit();
char *c_str = ba.data();
string slash = "/";
Mat training;
Mat response;
read_num_class_data("train.txt", 4, training, response);
cout<<training.rows<<endl;
cout<<response.rows<<endl;
ofstream output_file;
output_file.open("Ratio.txt");
Mat layers = Mat(3,1,CV_32SC1);
int sz = training.cols ;
layers.row(0) = Scalar(sz);
layers.row(1) = Scalar(16);
layers.row(2) = Scalar(1);
CvANN_MLP mlp;
CvANN_MLP_TrainParams params;
CvTermCriteria criteria;
criteria.max_iter = 1000;
criteria.epsilon = 0.00001f;
criteria.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;
params.train_method = CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale = 0.1f;
params.bp_moment_scale = 0.1f;
params.term_crit = criteria;
mlp.create(layers,CvANN_MLP::SIGMOID_SYM);
int i = mlp.train(training, response, Mat(),Mat(),params); // Train dataset
FileStorage fs("mlp.xml", FileStorage::WRITE); // or xml
mlp.write(*fs, "mlp"); // don't think too much about the deref, it casts to a FileNode
ui->label_training->setText("Training finish");
//mlp.load("mlp.xml","mlp"); //Load ANN weights for each layer
vector<string> img_name;
string output_directory = "output_img/";
img_name = listFile(c_str);
Mat testing(1, 3, CV_32FC1);
Mat predict (1 , 1, CV_32F );
int file_num = 0;
for(int i = 0; i < img_name.size(); i++) //size of the img_name
{
ui->progressBar->setValue(i*100/img_name.size());
string file_name = c_str + slash + img_name[i];
Mat img_test = imread(file_name);
Mat img_test_clone = img_test.clone();
Mat img_thresh, img_thresh_copy, img_HSV, img_gray;
vector<Mat> img_split;
cvtColor(img_test_clone, img_HSV, CV_RGB2HSV);
cvtColor(img_test_clone, img_gray, CV_RGB2GRAY);
split(img_HSV, img_split);
threshold(img_split[0], img_thresh, 75, 255, CV_THRESH_BINARY);
img_thresh_copy = img_thresh.clone();
Mat hole = img_thresh_copy.clone();
floodFill(hole, Point(0,0), Scalar(255));
bitwise_not(hole, hole);
img_thresh_copy = (img_thresh_copy | hole);
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
Mat open_result;
morphologyEx(img_thresh, open_result, MORPH_CLOSE, element );
int infected_num = 0;
int total_pixels = 0;
if(img_test.data)
{
file_num++;
for (int m = 0; m < img_test.rows; m++)
{
for (int n = 0; n < img_test.cols; n++)
{
if (img_thresh_copy.at<uchar>(m, n) == 255)
{
total_pixels++;
testing.at<float>(0, 0) = (float)img_test.at<Vec3b>(m, n)[0];
testing.at<float>(0, 1) = (float)img_test.at<Vec3b>(m, n)[1];
testing.at<float>(0, 2) = (float)img_test.at<Vec3b>(m, n)[2];
mlp.predict(testing,predict);
float a = predict.at<float>(0,0);
//.........这里部分代码省略.........
示例14: main
int main()
{
const int sampleTypeCount = 7; //共有几种字体
const int sampleCount = 50; //每种字体的样本数
const int sampleAllCount = sampleCount*sampleTypeCount;
const int featureCount = 256; //特征维数
CvANN_MLP bp;// = CvANN_MLP(layerSizes,CvANN_MLP::SIGMOID_SYM,1,1);
string str_dir[sampleTypeCount];
str_dir[0] = "A水滴渍";
str_dir[1] = "B水纹";
str_dir[2] = "C指纹";
str_dir[3] = "D釉面凹凸";
str_dir[4] = "X凹点";
str_dir[5] = "Y杂质";
str_dir[6] = "Z划痕";
float trainingData[sampleAllCount][featureCount] = { 0 };
float outputData[sampleAllCount][sampleTypeCount] = { 0 };
int itemIndex = 0;
for (int index = 0; index < 7; index++)
{
for (int i = 1; i <= 50; i++)
{
outputData[itemIndex][index] = 1;
cout << str_dir[index] << "_" << i << endl;
stringstream ss;
char num[4];
sprintf(num, "%03d", i);
ss << "特征样本库\\" << str_dir[index] << "\\" << num << ".jpg";
string path;
ss >> path;
//读取灰度图像以便计算灰度直方图
cv::Mat f = cv::imread(path, 0);
cv::Mat grayHist;
// 设定bin数目,也就是灰度级别,这里选择的是0-255灰度
int histSize = 63;
//cv::equalizeHist(f, f);
cv::normalize(f, f, histSize, 0, cv::NORM_MINMAX);
//cv::bitwise_xor(f, cv::Scalar(255), f);//反相
// 设定取值范围,设定每级灰度的范围。
float range[] = { 0, 255 };
const float* histRange = { range };
bool uniform = true; bool accumulate = false;
cv::calcHist(&f, 1, 0, cv::Mat(), grayHist, 1, &histSize, &histRange, uniform, accumulate);
for (int j = 0; j < 256; j++)
{
trainingData[itemIndex][j] = grayHist.ptr<float>(0)[0];
}
itemIndex++;
/*
// 创建直方图画布
int hist_w = 400; int hist_h = 400;
int bin_w = cvRound((double)hist_w / histSize);
cv::Mat histImage(hist_w, hist_h, CV_8UC3, cv::Scalar(0, 0, 0));
/// 将直方图归一化到范围 [ 0, histImage.rows ]
cv::normalize(grayHist, grayHist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());
/// 在直方图画布上画出直方图
for (int i = 1; i < histSize; i++)
{
line(histImage, cv::Point(bin_w*(i - 1), hist_h - cvRound(grayHist.at<float>(i - 1))),
cv::Point(bin_w*(i), hist_h - cvRound(grayHist.at<float>(i))),
cv::Scalar(0, 0, 255), 2, 8, 0);
}
stringstream s;
s << "samples\\反相正规化直方图\\" << str_dir[index] << "\\";
//s << "samples\\正规化直方图\\" << str_dir[index] << "\\";
//s << "samples\\均衡化直方图\\" << str_dir[index] << "\\";
//s << "samples\\直方图\\" << str_dir[index] << "\\";
//string dir = s.str();
//char* c;
//int len = dir.length();
//c = new char[len + 1];
//strcpy(c, dir.c_str());
//CheckDir(c);
s << "" << num << ".jpg";
s >> path;
cv::imwrite(path, histImage);
s.clear();
s << "samples\\反相正规化直方图\\" << str_dir[index] << "\\" << "Hist_" << num << ".jpg";
//s << "samples\\正规化直方图\\" << str_dir[index] << "\\" << "Hist_" << num << ".jpg";
//s << "samples\\均衡化直方图\\" << str_dir[index] << "\\" << "Hist_" << num << ".jpg";
//s << "samples\\直方图\\" << str_dir[index] << "\\" << "Hist_" << num << ".jpg";
//.........这里部分代码省略.........
示例15: build_mlp_classifier
static
int build_mlp_classifier( char* data_filename,
char* filename_to_save, char* filename_to_load )
{
const int class_count = 26;
CvMat* data = 0;
CvMat train_data;
CvMat* responses = 0;
CvMat* mlp_response = 0;
int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0;
int i, j;
double train_hr = 0, test_hr = 0;
CvANN_MLP mlp;
if( !ok )
{
printf( "Could not read the database %s\n", data_filename );
return -1;
}
printf( "The database %s is loaded.\n", data_filename );
nsamples_all = data->rows;
ntrain_samples = (int)(nsamples_all*0.8);
// Create or load MLP classifier
if( filename_to_load )
{
// load classifier from the specified file
mlp.load( filename_to_load );
ntrain_samples = 0;
if( !mlp.get_layer_count() )
{
printf( "Could not read the classifier %s\n", filename_to_load );
return -1;
}
printf( "The classifier %s is loaded.\n", data_filename );
}
else
{
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//
// MLP does not support categorical variables by explicitly.
// So, instead of the output class label, we will use
// a binary vector of <class_count> components for training and,
// therefore, MLP will give us a vector of "probabilities" at the
// prediction stage
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
CvMat* new_responses = cvCreateMat( ntrain_samples, class_count, CV_32F );
// 1. unroll the responses
printf( "Unrolling the responses...\n");
for( i = 0; i < ntrain_samples; i++ )
{
int cls_label = cvRound(responses->data.fl[i]) - 'A';
float* bit_vec = (float*)(new_responses->data.ptr + i*new_responses->step);
for( j = 0; j < class_count; j++ )
bit_vec[j] = 0.f;
bit_vec[cls_label] = 1.f;
}
cvGetRows( data, &train_data, 0, ntrain_samples );
// 2. train classifier
int layer_sz[] = { data->cols, 100, 100, class_count };
CvMat layer_sizes =
cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz );
mlp.create( &layer_sizes );
printf( "Training the classifier (may take a few minutes)...\n");
mlp.train( &train_data, new_responses, 0, 0,
CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01),
#if 1
CvANN_MLP_TrainParams::BACKPROP,0.001));
#else
CvANN_MLP_TrainParams::RPROP,0.05));
#endif
cvReleaseMat( &new_responses );
printf("\n");
}
mlp_response = cvCreateMat( 1, class_count, CV_32F );
// compute prediction error on train and test data
for( i = 0; i < nsamples_all; i++ )
{
int best_class;
CvMat sample;
cvGetRow( data, &sample, i );
CvPoint max_loc = {0,0};
mlp.predict( &sample, mlp_response );
cvMinMaxLoc( mlp_response, 0, 0, 0, &max_loc, 0 );
best_class = max_loc.x + 'A';
int r = fabs((double)best_class - responses->data.fl[i]) < FLT_EPSILON ? 1 : 0;
if( i < ntrain_samples )
train_hr += r;
else
//.........这里部分代码省略.........