本文整理汇总了C++中CppAD::NearEqual方法的典型用法代码示例。如果您正苦于以下问题:C++ CppAD::NearEqual方法的具体用法?C++ CppAD::NearEqual怎么用?C++ CppAD::NearEqual使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CppAD
的用法示例。
在下文中一共展示了CppAD::NearEqual方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: opt_val_hes
bool opt_val_hes(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// temporary indices
size_t j, k;
// x space vector
size_t n = 1;
BaseVector x(n);
x[0] = 2. * 3.141592653;
// y space vector
size_t m = 1;
BaseVector y(m);
y[0] = 1.;
// t and z vectors
size_t ell = 10;
BaseVector t(ell);
BaseVector z(ell);
for(k = 0; k < ell; k++)
{ t[k] = double(k) / double(ell); // time of measurement
z[k] = y[0] * sin( x[0] * t[k] ); // data without noise
}
// construct the function object
Fun fun(t, z);
// evaluate the Jacobian and Hessian
BaseVector jac(n), hes(n * n);
int signdet = CppAD::opt_val_hes(x, y, fun, jac, hes);
// we know that F_yy is positive definate for this case
assert( signdet == 1 );
// create ADFun object g corresponding to V(x)
ADVector a_x(n), a_v(1);
for(j = 0; j < n; j++)
a_x[j] = x[j];
Independent(a_x);
a_v[0] = V(a_x, t, z);
CppAD::ADFun<double> g(a_x, a_v);
// accuracy for checks
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// check Jacobian
BaseVector check_jac = g.Jacobian(x);
for(j = 0; j < n; j++)
ok &= NearEqual(jac[j], check_jac[j], eps, eps);
// check Hessian
BaseVector check_hes = g.Hessian(x, 0);
for(j = 0; j < n*n; j++)
ok &= NearEqual(hes[j], check_hes[j], eps, eps);
return ok;
}
示例2: interp_retape
bool interp_retape(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// domain space vector
size_t n = 1;
CPPAD_TESTVECTOR(AD<double>) X(n);
// loop over argument values
size_t k;
for(k = 0; k < TableLength - 1; k++)
{
X[0] = .4 * ArgumentValue[k] + .6 * ArgumentValue[k+1];
// declare independent variables and start tape recording
// (use a different tape for each argument value)
CppAD::Independent(X);
// evaluate piecewise linear interpolant at X[0]
AD<double> A = Argument(X[0]);
AD<double> F = Function(X[0]);
AD<double> S = Slope(X[0]);
AD<double> I = F + (X[0] - A) * S;
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) Y(m);
Y[0] = I;
// create f: X -> Y and stop tape recording
CppAD::ADFun<double> f(X, Y);
// vectors for arguments to the function object f
CPPAD_TESTVECTOR(double) x(n); // argument values
CPPAD_TESTVECTOR(double) y(m); // function values
CPPAD_TESTVECTOR(double) dx(n); // differentials in x space
CPPAD_TESTVECTOR(double) dy(m); // differentials in y space
// to check function value we use the fact that X[0] is between
// ArgumentValue[k] and ArgumentValue[k+1]
double delta, check;
x[0] = Value(X[0]);
delta = ArgumentValue[k+1] - ArgumentValue[k];
check = FunctionValue[k+1] * (x[0]-ArgumentValue[k]) / delta
+ FunctionValue[k] * (ArgumentValue[k+1]-x[0]) / delta;
ok &= NearEqual(Y[0], check, 1e-10, 1e-10);
// evaluate partials w.r.t. x[0]
dx[0] = 1.;
dy = f.Forward(1, dx);
// check that the derivative is the slope
check = (FunctionValue[k+1] - FunctionValue[k])
/ (ArgumentValue[k+1] - ArgumentValue[k]);
ok &= NearEqual(dy[0], check, 1e-10, 1e-10);
}
return ok;
}
示例3: BenderQuad
bool BenderQuad(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// temporary indices
size_t i, j;
// x space vector
size_t n = 1;
BAvector x(n);
x[0] = 2. * 3.141592653;
// y space vector
size_t m = 1;
BAvector y(m);
y[0] = 1.;
// t and z vectors
size_t N = 10;
BAvector t(N);
BAvector z(N);
for(i = 0; i < N; i++)
{ t[i] = double(i) / double(N); // time of measurement
z[i] = y[0] * sin( x[0] * t[i] ); // data without noise
}
// construct the function object
Fun fun(t, z);
// evaluate the G(x), G'(x) and G''(x)
BAvector g(1), gx(n), gxx(n * n);
CppAD::BenderQuad(x, y, fun, g, gx, gxx);
// create ADFun object Gfun corresponding to G(x)
ADvector a_x(n), a_g(1);
for(j = 0; j < n; j++)
a_x[j] = x[j];
Independent(a_x);
a_g[0] = G(a_x, t, z);
CppAD::ADFun<double> Gfun(a_x, a_g);
// accuracy for checks
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// check Jacobian
BAvector check_gx = Gfun.Jacobian(x);
for(j = 0; j < n; j++)
ok &= NearEqual(gx[j], check_gx[j], eps, eps);
// check Hessian
BAvector check_gxx = Gfun.Hessian(x, 0);
for(j = 0; j < n*n; j++)
ok &= NearEqual(gxx[j], check_gxx[j], eps, eps);
return ok;
}
示例4: forward_order
bool forward_order(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 2;
CPPAD_TESTVECTOR(AD<double>) ax(n);
ax[0] = 0.;
ax[1] = 1.;
// declare independent variables and starting recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) ay(m);
ay[0] = ax[0] * ax[0] * ax[1];
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
// initially, the variable values during taping are stored in f
ok &= f.size_order() == 1;
// Compute three forward orders at one
size_t q = 2, q1 = q+1;
CPPAD_TESTVECTOR(double) xq(n*q1), yq;
xq[q1*0 + 0] = 3.; xq[q1*1 + 0] = 4.; // x^0 (order zero)
xq[q1*0 + 1] = 1.; xq[q1*1 + 1] = 0.; // x^1 (order one)
xq[q1*0 + 2] = 0.; xq[q1*1 + 2] = 0.; // x^2 (order two)
// X(t) = x^0 + x^1 * t + x^2 * t^2
// = [ 3 + t, 4 ]
yq = f.Forward(q, xq);
ok &= size_t( yq.size() ) == m*q1;
// Y(t) = F[X(t)]
// = (3 + t) * (3 + t) * 4
// = y^0 + y^1 * t + y^2 * t^2 + o(t^3)
//
// check y^0 (order zero)
CPPAD_TESTVECTOR(double) x0(n);
x0[0] = xq[q1*0 + 0];
x0[1] = xq[q1*1 + 0];
ok &= NearEqual(yq[q1*0 + 0] , x0[0]*x0[0]*x0[1], eps, eps);
//
// check y^1 (order one)
ok &= NearEqual(yq[q1*0 + 1] , 2.*x0[0]*x0[1], eps, eps);
//
// check y^2 (order two)
double F_00 = 2. * yq[q1*0 + 2]; // second partial F w.r.t. x_0, x_0
ok &= NearEqual(F_00, 2.*x0[1], eps, eps);
// check number of orders per variable
ok &= f.size_order() == 3;
return ok;
}
示例5: atanh
bool atanh(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// 10 times machine epsilon
double eps = 10. * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
double x0 = 0.5;
CPPAD_TESTVECTOR(AD<double>) ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// a temporary value
AD<double> tanh_of_x0 = CppAD::tanh(ax[0]);
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) ay(m);
ay[0] = CppAD::atanh(tanh_of_x0);
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
// check value
ok &= NearEqual(ay[0] , x0, eps, eps);
// forward computation of first partial w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 1., eps, eps);
// forward computation of higher order partials w.r.t. x[0]
size_t n_order = 5;
for(size_t order = 2; order < n_order; order++)
{ dx[0] = 0.;
dy = f.Forward(order, dx);
ok &= NearEqual(dy[0], 0., eps, eps);
}
// reverse computation of derivatives
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n_order * n);
w[0] = 1.;
dw = f.Reverse(n_order, w);
ok &= NearEqual(dw[0], 1., eps, eps);
for(size_t order = 1; order < n_order; order++)
ok &= NearEqual(dw[order * n + 0], 0., eps, eps);
return ok;
}
示例6: Div
bool Div(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
double x0 = 0.5;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// some binary division operations
AD<double> a = x[0] / 1.; // AD<double> / double
AD<double> b = a / 2; // AD<double> / int
AD<double> c = 3. / b; // double / AD<double>
AD<double> d = 4 / c; // int / AD<double>
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = (x[0] * x[0]) / d; // AD<double> / AD<double>
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0], x0*x0*3.*2.*1./(4.*x0), eps99, eps99);
// forward computation of partials w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 3.*2.*1./4., eps99, eps99);
// reverse computation of derivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], 3.*2.*1./4., eps99, eps99);
// use a VecAD<Base>::reference object with division
CppAD::VecAD<double> v(1);
AD<double> zero(0);
v[zero] = d;
AD<double> result = (x[0] * x[0]) / v[zero];
ok &= (result == y[0]);
return ok;
}
示例7: atan2
bool atan2(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
double x0 = 0.5;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// a temporary value
AD<double> sin_of_x0 = CppAD::sin(x[0]);
AD<double> cos_of_x0 = CppAD::cos(x[0]);
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = CppAD::atan2(sin_of_x0, cos_of_x0);
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0] , x0, eps99, eps99);
// forward computation of first partial w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 1., eps99, eps99);
// reverse computation of derivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], 1., eps99, eps99);
// use a VecAD<Base>::reference object with atan2
CppAD::VecAD<double> v(2);
AD<double> zero(0);
AD<double> one(1);
v[zero] = sin_of_x0;
v[one] = cos_of_x0;
AD<double> result = CppAD::atan2(v[zero], v[one]);
ok &= NearEqual(result, x0, eps99, eps99);
return ok;
}
示例8: AddEq
bool AddEq(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
double x0 = .5;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// range space vector
size_t m = 2;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = x[0]; // initial value
y[0] += 2; // AD<double> += int
y[0] += 4.; // AD<double> += double
y[1] = y[0] += x[0]; // use the result of a compound assignment
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0] , x0+2.+4.+x0, eps99, eps99);
ok &= NearEqual(y[1] , y[0], eps99, eps99);
// forward computation of partials w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 2., eps99, eps99);
ok &= NearEqual(dy[1], 2., eps99, eps99);
// reverse computation of derivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
w[1] = 0.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], 2., eps99, eps99);
// use a VecAD<Base>::reference object with computed addition
CppAD::VecAD<double> v(1);
AD<double> zero(0);
AD<double> result = 1;
v[zero] = 2;
result += v[zero];
ok &= (result == 3);
return ok;
}
示例9: pow_int
bool pow_int(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// declare independent variables and start tape recording
size_t n = 1;
double x0 = -0.5;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
CppAD::Independent(x);
// dependent variable vector
size_t m = 7;
CPPAD_TESTVECTOR(AD<double>) y(m);
int i;
for(i = 0; i < int(m); i++)
y[i] = CppAD::pow(x[0], i - 3);
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
double check;
for(i = 0; i < int(m); i++)
{ check = std::pow(x0, double(i - 3));
ok &= NearEqual(y[i] , check, 1e-10 , 1e-10);
}
// forward computation of first partial w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
for(i = 0; i < int(m); i++)
{ check = double(i-3) * std::pow(x0, double(i - 4));
ok &= NearEqual(dy[i] , check, 1e-10 , 1e-10);
}
// reverse computation of derivative of y[i]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
for(i = 0; i < int(m); i++)
w[i] = 0.;
for(i = 0; i < int(m); i++)
{ w[i] = 1.;
dw = f.Reverse(1, w);
check = double(i-3) * std::pow(x0, double(i - 4));
ok &= NearEqual(dw[0] , check, 1e-10 , 1e-10);
w[i] = 0.;
}
return ok;
}
示例10: get_started
/* $$
$head Use Atomic Function$$
$codep */
bool get_started(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
/* $$
$subhead Constructor$$
$codep */
// Create the atomic get_started object
atomic_get_started afun("atomic_get_started");
/* $$
$subhead Recording$$
$codep */
// Create the function f(x)
//
// domain space vector
size_t n = 1;
double x0 = 0.5;
vector< AD<double> > ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
vector< AD<double> > ay(m);
// call user function and store get_started(x) in au[0]
vector< AD<double> > au(m);
afun(ax, au); // u = 1 / x
// now use AD division to invert to invert the operation
ay[0] = 1.0 / au[0]; // y = 1 / u = x
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (ax, ay); // f(x) = x
/* $$
$subhead forward$$
$codep */
// check function value
double check = x0;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
// check zero order forward mode
size_t p;
vector<double> x_p(n), y_p(m);
p = 0;
x_p[0] = x0;
y_p = f.Forward(p, x_p);
ok &= NearEqual(y_p[0] , check, eps, eps);
return ok;
}
示例11: Add
bool Add(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
double x0 = 0.5;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// some binary addition operations
AD<double> a = x[0] + 1.; // AD<double> + double
AD<double> b = a + 2; // AD<double> + int
AD<double> c = 3. + b; // double + AD<double>
AD<double> d = 4 + c; // int + AD<double>
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = d + x[0]; // AD<double> + AD<double>
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0] , 2. * x0 + 10, eps99, eps99);
// forward computation of partials w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 2., eps99, eps99);
// reverse computation of derivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], 2., eps99, eps99);
// use a VecAD<Base>::reference object with addition
CppAD::VecAD<double> v(1);
AD<double> zero(0);
v[zero] = a;
AD<double> result = v[zero] + 2;
ok &= (result == b);
return ok;
}
示例12: SubEq
bool SubEq(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// domain space vector
size_t n = 1;
double x0 = .5;
CPPAD_TEST_VECTOR< AD<double> > x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// range space vector
size_t m = 2;
CPPAD_TEST_VECTOR< AD<double> > y(m);
y[0] = 3. * x[0]; // initial value
y[0] -= 2; // AD<double> -= int
y[0] -= 4.; // AD<double> -= double
y[1] = y[0] -= x[0]; // use the result of a computed assignment
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0] , 3.*x0-(2.+4.+x0), 1e-10 , 1e-10);
ok &= NearEqual(y[1] , y[0], 1e-10 , 1e-10);
// forward computation of partials w.r.t. x[0]
CPPAD_TEST_VECTOR<double> dx(n);
CPPAD_TEST_VECTOR<double> dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 2., 1e-10, 1e-10);
ok &= NearEqual(dy[1], 2., 1e-10, 1e-10);
// reverse computation of derivative of y[0]
CPPAD_TEST_VECTOR<double> w(m);
CPPAD_TEST_VECTOR<double> dw(n);
w[0] = 1.;
w[1] = 0.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], 2., 1e-10, 1e-10);
// use a VecAD<Base>::reference object with computed subtraction
CppAD::VecAD<double> v(1);
AD<double> zero(0);
AD<double> result = 1;
v[zero] = 2;
result -= v[zero];
ok &= (result == -1);
return ok;
}
示例13: MulEq
bool MulEq(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// domain space vector
size_t n = 1;
double x0 = .5;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// range space vector
size_t m = 2;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = x[0]; // initial value
y[0] *= 2; // AD<double> *= int
y[0] *= 4.; // AD<double> *= double
y[1] = y[0] *= x[0]; // use the result of a computed assignment
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0] , x0*2.*4.*x0, 1e-10 , 1e-10);
ok &= NearEqual(y[1] , y[0], 1e-10 , 1e-10);
// forward computation of partials w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], 8.*2.*x0, 1e-10, 1e-10);
ok &= NearEqual(dy[1], 8.*2.*x0, 1e-10, 1e-10);
// reverse computation of derivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
w[1] = 0.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], 8.*2.*x0, 1e-10, 1e-10);
// use a VecAD<Base>::reference object with computed multiplication
CppAD::VecAD<double> v(1);
AD<double> zero(0);
AD<double> result = 1;
v[zero] = 2;
result *= v[zero];
ok &= (result == 2);
return ok;
}
示例14: Mul
bool Mul(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// domain space vector
size_t n = 1;
double x0 = .5;
CPPAD_TEST_VECTOR< AD<double> > x(n);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
// some binary multiplication operations
AD<double> a = x[0] * 1.; // AD<double> * double
AD<double> b = a * 2; // AD<double> * int
AD<double> c = 3. * b; // double * AD<double>
AD<double> d = 4 * c; // int * AD<double>
// range space vector
size_t m = 1;
CPPAD_TEST_VECTOR< AD<double> > y(m);
y[0] = x[0] * d; // AD<double> * AD<double>
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0] , x0*(4.*3.*2.*1.)*x0, 1e-10 , 1e-10);
// forward computation of partials w.r.t. x[0]
CPPAD_TEST_VECTOR<double> dx(n);
CPPAD_TEST_VECTOR<double> dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], (4.*3.*2.*1.)*2.*x0, 1e-10 , 1e-10);
// reverse computation of derivative of y[0]
CPPAD_TEST_VECTOR<double> w(m);
CPPAD_TEST_VECTOR<double> dw(n);
w[0] = 1.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], (4.*3.*2.*1.)*2.*x0, 1e-10 , 1e-10);
// use a VecAD<Base>::reference object with multiplication
CppAD::VecAD<double> v(1);
AD<double> zero(0);
v[zero] = c;
AD<double> result = 4 * v[zero];
ok &= (result == d);
return ok;
}
示例15: Sub
bool Sub(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
double x0 = .5;
CPPAD_TESTVECTOR(AD<double>) x(1);
x[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(x);
AD<double> a = 2. * x[0] - 1.; // AD<double> - double
AD<double> b = a - 2; // AD<double> - int
AD<double> c = 3. - b; // double - AD<double>
AD<double> d = 4 - c; // int - AD<double>
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = x[0] - d; // AD<double> - AD<double>
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check value
ok &= NearEqual(y[0], x0-4.+3.+2.-2.*x0+1., eps99, eps99);
// forward computation of partials w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
dx[0] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], -1., eps99, eps99);
// reverse computation of derivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
dw = f.Reverse(1, w);
ok &= NearEqual(dw[0], -1., eps99, eps99);
// use a VecAD<Base>::reference object with subtraction
CppAD::VecAD<double> v(1);
AD<double> zero(0);
v[zero] = b;
AD<double> result = 3. - v[zero];
ok &= (result == c);
return ok;
}