当前位置: 首页>>代码示例>>C++>>正文


C++ ConvexHull::setIndices方法代码示例

本文整理汇总了C++中ConvexHull::setIndices方法的典型用法代码示例。如果您正苦于以下问题:C++ ConvexHull::setIndices方法的具体用法?C++ ConvexHull::setIndices怎么用?C++ ConvexHull::setIndices使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ConvexHull的用法示例。


在下文中一共展示了ConvexHull::setIndices方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: indices_but_the_plane

    /** \brief Given a plane, and the set of inlier indices representing it,
      * segment out the object of intererest supported by it. 
      *
      * \param[in] picked_idx the index of a point on the object
      * \param[in] cloud the full point cloud dataset
      * \param[in] plane_indices a set of indices representing the plane supporting the object of interest
      * \param[out] object the segmented resultant object 
      */
    void
    segmentObject (int picked_idx, 
                   const typename PointCloud<PointT>::ConstPtr &cloud, 
                   const PointIndices::Ptr &plane_indices, 
                   PointCloud<PointT> &object)
    {
      typename PointCloud<PointT>::Ptr plane_hull (new PointCloud<PointT>);

      // Compute the convex hull of the plane
      ConvexHull<PointT> chull;
      chull.setDimension (2);
      chull.setInputCloud (cloud);
      chull.setIndices (plane_indices);
      chull.reconstruct (*plane_hull);

      // Remove the plane indices from the data
      typename PointCloud<PointT>::Ptr plane (new PointCloud<PointT>);
      ExtractIndices<PointT> extract (true);
      extract.setInputCloud (cloud);
      extract.setIndices (plane_indices);
      extract.setNegative (false);
      extract.filter (*plane);
      PointIndices::Ptr indices_but_the_plane (new PointIndices);
      extract.getRemovedIndices (*indices_but_the_plane);

      // Extract all clusters above the hull
      PointIndices::Ptr points_above_plane (new PointIndices);
      ExtractPolygonalPrismData<PointT> exppd;
      exppd.setInputCloud (cloud);
      exppd.setIndices (indices_but_the_plane);
      exppd.setInputPlanarHull (plane_hull);
      exppd.setViewPoint (cloud->points[picked_idx].x, cloud->points[picked_idx].y, cloud->points[picked_idx].z);
      exppd.setHeightLimits (0.001, 0.5);           // up to half a meter
      exppd.segment (*points_above_plane);

      vector<PointIndices> euclidean_label_indices;
      // Prefer a faster method if the cloud is organized, over EuclidanClusterExtraction
      if (cloud_->isOrganized ())
      {
        // Use an organized clustering segmentation to extract the individual clusters
        typename EuclideanClusterComparator<PointT, Label>::Ptr euclidean_cluster_comparator (new EuclideanClusterComparator<PointT, Label>);
        euclidean_cluster_comparator->setInputCloud (cloud);
        euclidean_cluster_comparator->setDistanceThreshold (0.03f, false);
        // Set the entire scene to false, and the inliers of the objects located on top of the plane to true
        Label l; l.label = 0;
        PointCloud<Label>::Ptr scene (new PointCloud<Label> (cloud->width, cloud->height, l));
        // Mask the objects that we want to split into clusters
        for (const int &index : points_above_plane->indices)
          scene->points[index].label = 1;
        euclidean_cluster_comparator->setLabels (scene);

        boost::shared_ptr<std::set<uint32_t> > exclude_labels = boost::make_shared<std::set<uint32_t> > ();
        exclude_labels->insert (0);
        euclidean_cluster_comparator->setExcludeLabels (exclude_labels);

        OrganizedConnectedComponentSegmentation<PointT, Label> euclidean_segmentation (euclidean_cluster_comparator);
        euclidean_segmentation.setInputCloud (cloud);

        PointCloud<Label> euclidean_labels;
        euclidean_segmentation.segment (euclidean_labels, euclidean_label_indices);
      }
      else
      {
        print_highlight (stderr, "Extracting individual clusters from the points above the reference plane ");
        TicToc tt; tt.tic ();

        EuclideanClusterExtraction<PointT> ec;
        ec.setClusterTolerance (0.02); // 2cm
        ec.setMinClusterSize (100);
        ec.setSearchMethod (search_);
        ec.setInputCloud (cloud);
        ec.setIndices (points_above_plane);
        ec.extract (euclidean_label_indices);
        
        print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%lu", euclidean_label_indices.size ()); print_info (" clusters]\n");
      }

      // For each cluster found
      bool cluster_found = false;
      for (const auto &euclidean_label_index : euclidean_label_indices)
      {
        if (cluster_found)
          break;
        // Check if the point that we picked belongs to it
        for (size_t j = 0; j < euclidean_label_index.indices.size (); ++j)
        {
          if (picked_idx != euclidean_label_index.indices[j])
            continue;
          copyPointCloud (*cloud, euclidean_label_index.indices, object);
          cluster_found = true;
          break;
        }
//.........这里部分代码省略.........
开发者ID:SunBlack,项目名称:pcl,代码行数:101,代码来源:pcd_select_object_plane.cpp

示例2: plane_hull

    /** \brief Given a plane, and the set of inlier indices representing it,
      * segment out the object of intererest supported by it. 
      *
      * \param[in] picked_idx the index of a point on the object
      * \param[in] cloud the full point cloud dataset
      * \param[in] plane_indices a set of indices representing the plane supporting the object of interest
      * \param[in] plane_boundary_indices a set of indices representing the boundary of the plane
      * \param[out] object the segmented resultant object 
      */
    void
    segmentObject (int picked_idx, 
                   const CloudConstPtr &cloud, 
                   const PointIndices::Ptr &plane_indices, 
                   const PointIndices::Ptr &plane_boundary_indices, 
                   Cloud &object)
    {
      CloudPtr plane_hull (new Cloud);

      // Compute the convex hull of the plane
      ConvexHull<PointT> chull;
      chull.setDimension (2);
      chull.setInputCloud (cloud);
      chull.setIndices (plane_boundary_indices);
      chull.reconstruct (*plane_hull);

      // Remove the plane indices from the data
      PointIndices::Ptr everything_but_the_plane (new PointIndices);
      if (indices_fullset_.size () != cloud->points.size ())
      {
        indices_fullset_.resize (cloud->points.size ());
        for (int p_it = 0; p_it < static_cast<int> (indices_fullset_.size ()); ++p_it)
          indices_fullset_[p_it] = p_it;
      }
      std::vector<int> indices_subset = plane_indices->indices;
      std::sort (indices_subset.begin (), indices_subset.end ());
      set_difference (indices_fullset_.begin (), indices_fullset_.end (), 
                      indices_subset.begin (), indices_subset.end (), 
                      inserter (everything_but_the_plane->indices, everything_but_the_plane->indices.begin ()));

      // Extract all clusters above the hull
      PointIndices::Ptr points_above_plane (new PointIndices);
      ExtractPolygonalPrismData<PointT> exppd;
      exppd.setInputCloud (cloud);
      exppd.setInputPlanarHull (plane_hull);
      exppd.setIndices (everything_but_the_plane);
      exppd.setHeightLimits (0.0, 0.5);           // up to half a meter
      exppd.segment (*points_above_plane);

      // Use an organized clustering segmentation to extract the individual clusters
      EuclideanClusterComparator<PointT, Normal, Label>::Ptr euclidean_cluster_comparator (new EuclideanClusterComparator<PointT, Normal, Label>);
      euclidean_cluster_comparator->setInputCloud (cloud);
      euclidean_cluster_comparator->setDistanceThreshold (0.03f, false);
      // Set the entire scene to false, and the inliers of the objects located on top of the plane to true
      Label l; l.label = 0;
      PointCloud<Label>::Ptr scene (new PointCloud<Label> (cloud->width, cloud->height, l));
      // Mask the objects that we want to split into clusters
      for (int i = 0; i < static_cast<int> (points_above_plane->indices.size ()); ++i)
        scene->points[points_above_plane->indices[i]].label = 1;
      euclidean_cluster_comparator->setLabels (scene);

      vector<bool> exclude_labels (2);  exclude_labels[0] = true; exclude_labels[1] = false;
      euclidean_cluster_comparator->setExcludeLabels (exclude_labels);

      OrganizedConnectedComponentSegmentation<PointT, Label> euclidean_segmentation (euclidean_cluster_comparator);
      euclidean_segmentation.setInputCloud (cloud);

      PointCloud<Label> euclidean_labels;
      vector<PointIndices> euclidean_label_indices;
      euclidean_segmentation.segment (euclidean_labels, euclidean_label_indices);

      // For each cluster found
      bool cluster_found = false;
      for (size_t i = 0; i < euclidean_label_indices.size (); i++)
      {
        if (cluster_found)
          break;
        // Check if the point that we picked belongs to it
        for (size_t j = 0; j < euclidean_label_indices[i].indices.size (); ++j)
        {
          if (picked_idx != euclidean_label_indices[i].indices[j])
            continue;
          //pcl::PointCloud<PointT> cluster;
          pcl::copyPointCloud (*cloud, euclidean_label_indices[i].indices, object);
          cluster_found = true;
          break;
          //object_indices = euclidean_label_indices[i].indices;
          //clusters.push_back (cluster);
        }
      }
    }
开发者ID:Bastl34,项目名称:PCL,代码行数:90,代码来源:ni_linemod.cpp


注:本文中的ConvexHull::setIndices方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。