本文整理汇总了C++中ConstantSDNode::getZExtValue方法的典型用法代码示例。如果您正苦于以下问题:C++ ConstantSDNode::getZExtValue方法的具体用法?C++ ConstantSDNode::getZExtValue怎么用?C++ ConstantSDNode::getZExtValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ConstantSDNode
的用法示例。
在下文中一共展示了ConstantSDNode::getZExtValue方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: SelectADDRVTX_READ
bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode * IMMOffset;
if (Addr.getOpcode() == ISD::ADD
&& (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
&& isInt<16>(IMMOffset->getZExtValue())) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
return true;
// If the pointer address is constant, we can move it to the offset field.
} else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
&& isInt<16>(IMMOffset->getZExtValue())) {
Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
SDLoc(CurDAG->getEntryNode()),
AMDGPU::ZERO, MVT::i32);
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
return true;
}
// Default case, no offset
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
示例2: SelectADDRlocal
// Match memory operand of the form [reg], [imm+reg], and [reg+imm]
bool PTXDAGToDAGISel::SelectADDRlocal(SDValue &Addr, SDValue &Base,
SDValue &Offset) {
//errs() << "SelectADDRlocal: ";
//Addr.getNode()->dumpr();
if (isa<FrameIndexSDNode>(Addr)) {
Base = Addr;
Offset = CurDAG->getTargetConstant(0, Addr.getValueType().getSimpleVT());
//errs() << "Success\n";
return true;
}
if (CurDAG->isBaseWithConstantOffset(Addr)) {
Base = Addr.getOperand(0);
if (!isa<FrameIndexSDNode>(Base)) {
//errs() << "Failure\n";
return false;
}
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
//errs() << "Offset: ";
//Offset.getNode()->dumpr();
//errs() << "Success\n";
return true;
}
//errs() << "Failure\n";
return false;
}
示例3: CLI
SDValue ARM64SelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
ConstantSDNode *SizeValue = dyn_cast<ConstantSDNode>(Size);
const char *bzeroEntry =
(V && V->isNullValue()) ? Subtarget->getBZeroEntry() : 0;
// For small size (< 256), it is not beneficial to use bzero
// instead of memset.
if (bzeroEntry && (!SizeValue || SizeValue->getZExtValue() > 256)) {
const ARM64TargetLowering &TLI = *static_cast<const ARM64TargetLowering *>(
DAG.getTarget().getTargetLowering());
EVT IntPtr = TLI.getPointerTy();
Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(
Chain, Type::getVoidTy(*DAG.getContext()), false, false, false, false,
0, CallingConv::C, /*isTailCall=*/false,
/*doesNotRet=*/false, /*isReturnValueUsed=*/false,
DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
return SDValue();
}
示例4: assert
/// ComplexPattern used on Cpu0InstrInfo
/// Used on Cpu0 Load/Store instructions
bool Cpu0DAGToDAGISel::
SelectAddr(SDNode *Parent, SDValue Addr, SDValue &Base, SDValue &Offset) {
EVT ValTy = Addr.getValueType();
// If Parent is an unaligned f32 load or store, select a (base + index)
// floating point load/store instruction (luxc1 or suxc1).
const LSBaseSDNode* LS = 0;
if (Parent && (LS = dyn_cast<LSBaseSDNode>(Parent))) {
EVT VT = LS->getMemoryVT();
if (VT.getSizeInBits() / 8 > LS->getAlignment()) {
assert(TLI.allowsUnalignedMemoryAccesses(VT) &&
"Unaligned loads/stores not supported for this type.");
if (VT == MVT::f32)
return false;
}
}
// if Address is FI, get the TargetFrameIndex.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
Offset = CurDAG->getTargetConstant(0, ValTy);
return true;
}
// on PIC code Load GA
if (Addr.getOpcode() == Cpu0ISD::Wrapper) {
Base = Addr.getOperand(0);
Offset = Addr.getOperand(1);
return true;
}
if (TM.getRelocationModel() != Reloc::PIC_) {
if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress))
return false;
}
// Addresses of the form FI+const or FI|const
if (CurDAG->isBaseWithConstantOffset(Addr)) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
if (isInt<16>(CN->getSExtValue())) {
// If the first operand is a FI, get the TargetFI Node
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
(Addr.getOperand(0)))
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
else
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
return true;
}
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, ValTy);
return true;
}
示例5: SelectADDRIndirect
bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
SDValue &Offset) {
ConstantSDNode *C;
if ((C = dyn_cast<ConstantSDNode>(Addr))) {
Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
} else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
} else {
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
}
return true;
}
示例6: UndefOrImm
// Return true if N is a undef or a constant.
// If N was undef, return a (i8imm 0) in Retval
// If N was imm, convert it to i8imm and return in Retval
// Note: The convert to i8imm is required, otherwise the
// pattern matcher inserts a bunch of IMOVi8rr to convert
// the imm to i8imm, and this causes instruction selection
// to fail.
bool NVPTXDAGToDAGISel::UndefOrImm(SDValue Op, SDValue N, SDValue &Retval) {
if (!(N.getOpcode() == ISD::UNDEF) && !(N.getOpcode() == ISD::Constant))
return false;
if (N.getOpcode() == ISD::UNDEF)
Retval = CurDAG->getTargetConstant(0, MVT::i8);
else {
ConstantSDNode *cn = cast<ConstantSDNode>(N.getNode());
unsigned retval = cn->getZExtValue();
Retval = CurDAG->getTargetConstant(retval, MVT::i8);
}
return true;
}
示例7:
bool AArch64DAGToDAGISel::SelectLogicalImm(SDValue N, SDValue &Imm) {
uint32_t Bits;
uint32_t RegWidth = N.getValueType().getSizeInBits();
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (!CN) return false;
if (!A64Imms::isLogicalImm(RegWidth, CN->getZExtValue(), Bits))
return false;
Imm = CurDAG->getTargetConstant(Bits, MVT::i32);
return true;
}
示例8: selectAddESubE
void MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
SDValue CmpLHS, const SDLoc &DL,
SDNode *Node) const {
unsigned Opc = InFlag.getOpcode();
(void)Opc;
assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
(Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
"(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu;
if (Subtarget->isGP64bit()) {
SLTuOp = Mips::SLTu64;
ADDuOp = Mips::DADDu;
}
SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
EVT VT = LHS.getValueType();
SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops);
if (Subtarget->isGP64bit()) {
// On 64-bit targets, sltu produces an i64 but our backend currently says
// that SLTu64 produces an i32. We need to fix this in the long run but for
// now, just make the DAG type-correct by asserting the upper bits are zero.
Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT,
CurDAG->getTargetConstant(0, DL, VT),
SDValue(Carry, 0),
CurDAG->getTargetConstant(Mips::sub_32, DL,
VT));
}
// Generate a second addition only if we know that RHS is not a
// constant-zero node.
SDNode *AddCarry = Carry;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
if (!C || C->getZExtValue())
AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS);
CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, SDValue(AddCarry, 0));
}
示例9: EmitTargetCodeForMemcpy
SDValue HexagonSelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (AlwaysInline || (Align & 0x3) != 0 || !ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (SizeVal < 32 || (SizeVal % 8) != 0)
return SDValue();
// Special case aligned memcpys with size >= 32 bytes and a multiple of 8.
//
const TargetLowering &TLI = *DAG.getSubtarget().getTargetLowering();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
Entry.Node = Dst;
Args.push_back(Entry);
Entry.Node = Src;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
const char *SpecialMemcpyName =
"__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setCallee(TLI.getLibcallCallingConv(RTLIB::MEMCPY),
Type::getVoidTy(*DAG.getContext()),
DAG.getTargetExternalSymbol(
SpecialMemcpyName, TLI.getPointerTy(DAG.getDataLayout())),
std::move(Args))
.setDiscardResult();
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
示例10: selectAddrFrameIndexOffset
/// Match frameindex+offset and frameindex|offset
bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
SDValue &Offset,
unsigned OffsetBits) const {
if (CurDAG->isBaseWithConstantOffset(Addr)) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
if (isIntN(OffsetBits, CN->getSExtValue())) {
EVT ValTy = Addr.getValueType();
// If the first operand is a FI, get the TargetFI Node
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
(Addr.getOperand(0)))
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
else
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
return true;
}
}
return false;
}
示例11:
/// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
EVT ValTy = Addr.getValueType();
// Addresses of the form FI+const or FI|const
if (CurDAG->isBaseWithConstantOffset(Addr)) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
if (isInt<12>(CN->getSExtValue())) {
// If the first operand is a FI then get the TargetFI Node
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
(Addr.getOperand(0)))
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
else
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
return true;
}
}
return false;
}
示例12: EmitTargetCodeForMemcpy
SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
const ARMSubtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
// Do repeated 4-byte loads and stores. To be improved.
// This requires 4-byte alignment.
if ((Align & 3) != 0)
return SDValue();
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMCPY);
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMCPY);
unsigned BytesLeft = SizeVal & 3;
unsigned NumMemOps = SizeVal >> 2;
unsigned EmittedNumMemOps = 0;
EVT VT = MVT::i32;
unsigned VTSize = 4;
unsigned i = 0;
// Emit a maximum of 4 loads in Thumb1 since we have fewer registers
const unsigned MaxLoadsInLDM = Subtarget.isThumb1Only() ? 4 : 6;
SDValue TFOps[6];
SDValue Loads[6];
uint64_t SrcOff = 0, DstOff = 0;
// FIXME: We should invent a VMEMCPY pseudo-instruction that lowers to
// VLDM/VSTM and make this code emit it when appropriate. This would reduce
// pressure on the general purpose registers. However this seems harder to map
// onto the register allocator's view of the world.
// The number of MEMCPY pseudo-instructions to emit. We use up to
// MaxLoadsInLDM registers per mcopy, which will get lowered into ldm/stm
// later on. This is a lower bound on the number of MEMCPY operations we must
// emit.
unsigned NumMEMCPYs = (NumMemOps + MaxLoadsInLDM - 1) / MaxLoadsInLDM;
// Code size optimisation: do not inline memcpy if expansion results in
// more instructions than the libary call.
if (NumMEMCPYs > 1 && DAG.getMachineFunction().getFunction().optForMinSize()) {
return SDValue();
}
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other, MVT::Glue);
for (unsigned I = 0; I != NumMEMCPYs; ++I) {
// Evenly distribute registers among MEMCPY operations to reduce register
// pressure.
unsigned NextEmittedNumMemOps = NumMemOps * (I + 1) / NumMEMCPYs;
unsigned NumRegs = NextEmittedNumMemOps - EmittedNumMemOps;
Dst = DAG.getNode(ARMISD::MEMCPY, dl, VTs, Chain, Dst, Src,
DAG.getConstant(NumRegs, dl, MVT::i32));
Src = Dst.getValue(1);
Chain = Dst.getValue(2);
DstPtrInfo = DstPtrInfo.getWithOffset(NumRegs * VTSize);
SrcPtrInfo = SrcPtrInfo.getWithOffset(NumRegs * VTSize);
EmittedNumMemOps = NextEmittedNumMemOps;
}
if (BytesLeft == 0)
return Chain;
// Issue loads / stores for the trailing (1 - 3) bytes.
auto getRemainingValueType = [](unsigned BytesLeft) {
return (BytesLeft >= 2) ? MVT::i16 : MVT::i8;
};
auto getRemainingSize = [](unsigned BytesLeft) {
return (BytesLeft >= 2) ? 2 : 1;
};
unsigned BytesLeftSave = BytesLeft;
i = 0;
while (BytesLeft) {
VT = getRemainingValueType(BytesLeft);
VTSize = getRemainingSize(BytesLeft);
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, dl, MVT::i32)),
SrcPtrInfo.getWithOffset(SrcOff));
TFOps[i] = Loads[i].getValue(1);
++i;
SrcOff += VTSize;
BytesLeft -= VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
i = 0;
BytesLeft = BytesLeftSave;
while (BytesLeft) {
//.........这里部分代码省略.........
示例13: SDValue
SDValue
X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) const {
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget->getMaxInlineSizeThreshold())
return SDValue();
/// If not DWORD aligned, it is more efficient to call the library. However
/// if calling the library is not allowed (AlwaysInline), then soldier on as
/// the code generated here is better than the long load-store sequence we
/// would otherwise get.
if (!AlwaysInline && (Align & 3) != 0)
return SDValue();
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 ||
SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// ESI might be used as a base pointer, in that case we can't simply overwrite
// the register. Fall back to generic code.
const X86RegisterInfo *TRI =
static_cast<const X86RegisterInfo *>(DAG.getTarget().getRegisterInfo());
if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
TRI->getBaseRegister() == X86::ESI)
return SDValue();
MVT AVT;
if (Align & 1)
AVT = MVT::i8;
else if (Align & 2)
AVT = MVT::i16;
else if (Align & 4)
// DWORD aligned
AVT = MVT::i32;
else
// QWORD aligned
AVT = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
unsigned UBytes = AVT.getSizeInBits() / 8;
unsigned CountVal = SizeVal / UBytes;
SDValue Count = DAG.getIntPtrConstant(CountVal);
unsigned BytesLeft = SizeVal % UBytes;
SDValue InFlag;
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
X86::ESI,
Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
EVT SizeVT = Size.getValueType();
Results.push_back(DAG.getMemcpy(Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
DAG.getConstant(Offset, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
DAG.getConstant(Offset, SrcVT)),
DAG.getConstant(BytesLeft, SizeVT),
Align, isVolatile, AlwaysInline,
DstPtrInfo.getWithOffset(Offset),
SrcPtrInfo.getWithOffset(Offset)));
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
示例14:
bool Mips16DAGToDAGISel::selectAddr16(
SDNode *Parent, SDValue Addr, SDValue &Base, SDValue &Offset,
SDValue &Alias) {
EVT ValTy = Addr.getValueType();
Alias = CurDAG->getTargetConstant(0, ValTy);
// if Address is FI, get the TargetFrameIndex.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
Offset = CurDAG->getTargetConstant(0, ValTy);
getMips16SPRefReg(Parent, Alias);
return true;
}
// on PIC code Load GA
if (Addr.getOpcode() == MipsISD::Wrapper) {
Base = Addr.getOperand(0);
Offset = Addr.getOperand(1);
return true;
}
if (TM.getRelocationModel() != Reloc::PIC_) {
if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress))
return false;
}
// Addresses of the form FI+const or FI|const
if (CurDAG->isBaseWithConstantOffset(Addr)) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
if (isInt<16>(CN->getSExtValue())) {
// If the first operand is a FI, get the TargetFI Node
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
(Addr.getOperand(0))) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
getMips16SPRefReg(Parent, Alias);
}
else
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
return true;
}
}
// Operand is a result from an ADD.
if (Addr.getOpcode() == ISD::ADD) {
// When loading from constant pools, load the lower address part in
// the instruction itself. Example, instead of:
// lui $2, %hi($CPI1_0)
// addiu $2, $2, %lo($CPI1_0)
// lwc1 $f0, 0($2)
// Generate:
// lui $2, %hi($CPI1_0)
// lwc1 $f0, %lo($CPI1_0)($2)
if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
isa<JumpTableSDNode>(Opnd0)) {
Base = Addr.getOperand(0);
Offset = Opnd0;
return true;
}
}
// If an indexed floating point load/store can be emitted, return false.
const LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(Parent);
if (LS &&
(LS->getMemoryVT() == MVT::f32 || LS->getMemoryVT() == MVT::f64) &&
Subtarget.hasFPIdx())
return false;
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, ValTy);
return true;
}
示例15: SDValue
SDValue
ARMSelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) const {
// Do repeated 4-byte loads and stores. To be improved.
// This requires 4-byte alignment.
if ((Align & 3) != 0)
return SDValue();
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget->getMaxInlineSizeThreshold())
return SDValue();
unsigned BytesLeft = SizeVal & 3;
unsigned NumMemOps = SizeVal >> 2;
unsigned EmittedNumMemOps = 0;
EVT VT = MVT::i32;
unsigned VTSize = 4;
unsigned i = 0;
const unsigned MAX_LOADS_IN_LDM = 6;
SDValue TFOps[MAX_LOADS_IN_LDM];
SDValue Loads[MAX_LOADS_IN_LDM];
uint64_t SrcOff = 0, DstOff = 0;
// Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
// same number of stores. The loads and stores will get combined into
// ldm/stm later on.
while (EmittedNumMemOps < NumMemOps) {
for (i = 0;
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, MVT::i32)),
SrcPtrInfo.getWithOffset(SrcOff), isVolatile,
false, false, 0);
TFOps[i] = Loads[i].getValue(1);
SrcOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
for (i = 0;
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
DAG.getConstant(DstOff, MVT::i32)),
DstPtrInfo.getWithOffset(DstOff),
isVolatile, false, 0);
DstOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
EmittedNumMemOps += i;
}
if (BytesLeft == 0)
return Chain;
// Issue loads / stores for the trailing (1 - 3) bytes.
unsigned BytesLeftSave = BytesLeft;
i = 0;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, MVT::i32)),
SrcPtrInfo.getWithOffset(SrcOff),
false, false, false, 0);
TFOps[i] = Loads[i].getValue(1);
++i;
SrcOff += VTSize;
BytesLeft -= VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
i = 0;
BytesLeft = BytesLeftSave;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
//.........这里部分代码省略.........